0
TECHNICAL PAPERS: Combustion and Gas Turbine Heat Transfer

Measurements and Calculations of Spectral Radiation Intensities for Turbulent Non-Premixed and Partially Premixed Flames

[+] Author and Article Information
Yuan Zheng

Maurice. J. Zucrow Laboratories, School of Mechanical Engineering, Purdue University, W. Lafayette, IN 47907-2014

R. S. Barlow

Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-0969

Jay P. Gore

Maurice. J. Zucrow Laboratories, School of Mechanical Engineering, Purdue University, W. Lafayette, IN 47907-2014

J. Heat Transfer 125(4), 678-686 (Jul 17, 2003) (9 pages) doi:10.1115/1.1589502 History: Received September 16, 2002; Revised March 20, 2003; Online July 17, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Barlow,  R. S., Smith,  N. S. A., Chen,  J.-Y., and Bilger,  R. W., 1999, “Nitric Oxide Formation in Dilute Hydrogen Jet Flames: Isolation of the Effects of Radiation and Turbulence-Chemistry Submodels,” Combust. Flame, 117, pp. 4–31.
Frank,  J. H., Barlow,  R. S., and Lundquist,  C., 2000, “Radiation and Nitric Oxide Formation in Turbulent Non-Premixed Jet Flames,” Proc. of the Combustion Institute, A. R. Burgess and J. P. Gore, eds., The Combustion Institute, Pittsburgh, PA, 28, pp. 447–454.
Hartick,  J. W., Tacke,  M., Fruchtel,  G., Hassel,  E. P., and Janicka,  J., 1996, “Interaction of Turbulence and Radiation in Confined Diffusion Flames,” Proc. of the Combustion Institute, A. R. Burgess and F. L. Dryer, eds., The Combustion Institute, Pittsburgh, PA, 26, pp. 75–82.
Gore,  J. P., Ip,  U.-S., and Sivathanu,  Y. R., 1992, “Coupled Structure and Radiation Analysis of Acetylene/Air Flames,” ASME J. Heat Transfer, 114, pp. 487–493.
Li,  G., and Modest,  M. F., 2002, “Application of Composition PDF Methods in the Investigation of Turbulence-Radiation Interactions,” J. Quant. Spectrosc. Radiat. Transf., 72, pp. 461–472.
Song,  T. H., and Viskanta,  R., 1987, “Interaction of Radiation With Turbulence: Application to a Combustion System,” AIAA J. Thermophysics, 1, pp. 56–62.
Gore,  J. P., Jeng,  S.-M., and Faeth,  G. M., 1987, “Spectral and Total Radiation Properties of Turbulent Hydrogen/Air Diffusion Flames,” ASME J. Heat Transfer, 109, pp. 165–171.
Kounalakis,  M. E., Gore,  J. P., and Faeth,  G. M., 1988, “Turbulence/Radiation Interactions in Nonpremixed Hydrogen/Air Flames,” Proc. of the Combustion Institute, The Combustion Institute, Pittsburgh, PA, 22, pp. 1281–1290.
Gore,  J. P., Jeng,  S.-M., and Faeth,  G. M., 1987, “Spectral and Total Radiation Properties of Turbulent Carbon Monoxide/Air Diffusion Flames,” AIAA J., 25, pp. 339–345.
Kounalakis,  M. E., Gore,  J. P., and Faeth,  G. M., 1989, “Mean and Fluctuating Radiation Properties of Nonpremixed Turbulent Carbon Monoxide/Air Flames,” ASME J. Heat Transfer, 111, pp. 1021–1030.
Jeng,  S.-M., Lai,  M.-C., and Faeth,  G. M., 1984, “Nonluminous Radiation in Turbulent Buoyant Axisymmetric Flames,” Combust. Sci. Technol., 40, pp. 41–53.
Hall,  R. J., and Vranos,  A., 1994, “Efficient Calculation of Gas Radiation From Turbulent Flames,” Int. J. Heat Mass Transfer, 37, pp. 2745–2750.
Kounalakis,  M. E., Sivathanu,  Y. R., and Faeth,  G. M., 1991, “Infrared Radiation Statistics of Nonluminous Turbulent Diffusion Flames,” ASME J. Heat Transfer, 113, pp. 437–445.
Zheng, Y., Sivathanu, Y. R., and Gore, J. P., 2002, “Measurements and Stochastic Time and Space Series Simulations of Spectral Radiation in a Turbulent Non-Premixed Flame,” Proc. of the Combustion Institute, J. H. Chen and M. D. Colket, eds., The Combustion Institute, Pittsburgh, PA, 29 , pp. 1957–1963.
International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, 2003, www.ca.sandia.gov/TNF, Sandia National Laboratories.
Meier,  W., Prucker,  S., Cao,  M.-H., and Stricker,  W., 1996, “Characterization of Turbulent H2/N2/Air Jet Diffusion Flames by Single-Pulse Spontaneous Raman Scattering,” Combust. Sci. Technol., 118, pp. 293–321.
Meier,  W., Barlow,  R. S., Chen,  Y.-L., and Chen,  J.-Y., 2000, “Raman/Rayleigh/LIF Measurements in a Turbulent CH4/H2/N2 Jet Diffusion Flame: Experimental Techniques and Turbulence-Chemistry Interaction,” Combust. Flame, 123, pp. 326–343.
Barlow,  R. S., and Frank,  J. H., 1998, “Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flames,” Proc. of the Combustion Institute, A. R. Burgess and F. L. Dryer, eds., The Combustion Institute, Pittsburgh, PA, 27, pp. 1087–1095.
Ji, J., Gore, J. P., Sivathanu, Y. R., and Lim, J., 2000, “Fast Infrared Array Spectrometer Used for Radiation Measurements of Lean Premixed Flames,” Proc. of the 34th National Heat Transfer Conference, S. C. Yao and A. Jones, eds., ASME, New York, 2 , pp. 73–78.
Masri,  A. R., Dibble,  R. W., and Barlow,  R. S., 1996, “The Structure of Turbulent Nonpremixed Flames Revealed by Raman-Rayleigh-LIF Measurements,” Prog. Energy Combust. Sci., 22, pp. 307–362.
Kim,  J. H., Simon,  T. W., and Viskanta,  R., 1993, “Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results,” ASME J. Heat Transfer, 115, pp. 5–6.
Grosshandler, W. L., 1993, “RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment,” NIST Technical Note 1402, U.S. Government Printing Office, Washington.
Grosshandler,  W. L., 1980, “Radiation Heat Transfer in Nonhomogenous Gases: A Simplified Approach,” Int. J. Heat Mass Transfer, 23, pp. 1447–1459.

Figures

Grahic Jump Location
Temperature distributions in flames C (circle), D (square), and E (triangular)
Grahic Jump Location
Spectral radiation intensities in flame E (x/D=60)
Grahic Jump Location
Temperature distributions in flame H3
Grahic Jump Location
Spectral radiation intensities in flame H3 (x/D=20)
Grahic Jump Location
Spectral radiation intensities in flame H3 (x/D=30)
Grahic Jump Location
Spectral radiation intensities in flame H3 (x/D=40)
Grahic Jump Location
Spectral radiation intensities in flame DLR_A (x/D=20)
Grahic Jump Location
Spectral radiation intensities in flame DLR_A (x/D=40)
Grahic Jump Location
Spectral radiation intensities in flame DLR_A (x/D=60)
Grahic Jump Location
Spectral radiation intensities in flame DLR_B (x/D=20)
Grahic Jump Location
Spectral radiation intensities in flame DLR_B (x/D=40)
Grahic Jump Location
Spectral radiation intensities in flame DLR_B (x/D=60)
Grahic Jump Location
Spectral radiation intensities in flame D (x/D=30)
Grahic Jump Location
Spectral radiation intensities in flame D (x/D=45)
Grahic Jump Location
Spectral radiation intensities in flame D (x/D=60)
Grahic Jump Location
Spectral radiation intensities in flame C (x/D=30)
Grahic Jump Location
Spectral radiation intensities in flame C (x/D=45)
Grahic Jump Location
Spectral radiation intensities in flame C (x/D=60)
Grahic Jump Location
Spectral radiation intensities in flame E (x/D=30)
Grahic Jump Location
Spectral radiation intensities in flame E (x/D=45)
Grahic Jump Location
Geometry for measurement and calculation on spectral radiation intensities
Grahic Jump Location
Temperature distributions in flames DLR_A (circle) and B (square)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In