0
TECHNICAL PAPERS: Microscale Heat Transfer

Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device

[+] Author and Article Information
Li Shi, Choongho Yu, Dohyung Kim

Department of Mechanical Engineering, Center for Nano and Molecular Science and Technology, University of Texas at Austin, TX 78712

Deyu Li

Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Wanyoung Jang, Zhen Yao

Department of Physics, Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Philip Kim

Department of Physics, Columbia University, New York

Arunava Majumdar

Materials Science Division, Lawrence Berkeley National Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720

J. Heat Transfer 125(5), 881-888 (Sep 23, 2003) (8 pages) doi:10.1115/1.1597619 History: Received October 14, 2002; Revised April 08, 2003; Online September 23, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
SEM micrograph of a microdevice for thermal property measurements of nanostructures
Grahic Jump Location
Fabrication process of the microdevice
Grahic Jump Location
SEM image of a SnO2 nanowire (a), a 10 nm diameter SWCN bundle (b), a 148 nm diameter SWCN bundle (c), and a CVD-grown SWCN (d) connecting two Pt electrodes on two suspended membranes
Grahic Jump Location
Schematic diagram and thermal resistance circuit of the experimental setup
Grahic Jump Location
Normalized first harmonic component of the measured resistance rise of the heating PRT as a function of the frequency of an ac current coupled to the dc heating current
Grahic Jump Location
The resistance (Rs(I=0)) of the PRT as a function of temperature
Grahic Jump Location
Thermal conductance of the five beams supporting one membrane of the microdevice as a function of temperature. Inset: temperature rise in the heating membrane as a function of the dc heating current at T0=54.95 K.
Grahic Jump Location
Thermal conductance of two SWCN bundles as a function of temperature. Inset: Thermal conductivity (k) as a function of temperature (T). Solid and open circles represent the measurement results of the 10 nm and the 148 nm diameter SWCN bundle, respectively.
Grahic Jump Location
Electrical conductance of two SWCN bundles as a function of temperature
Grahic Jump Location
Seebeck coefficient of two SWCN bundles as a function of temperature
Grahic Jump Location
Thermoelectric figure of merit (ZT) of two SWCN bundles as a function of temperature

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In