TECHNICAL PAPERS: Evaporation, Boiling, and Condensation

Inverse Determination of the Local Heat Transfer Coefficients for Nucleate Boiling on a Horizontal Cylinder

[+] Author and Article Information
H. Louahlia-Gualous, P. K. Panday, E. A. Artioukhine

Centre de recherche sur les écoulements, les surfaces et les transferts, Laboratoire CREST UTBM_UFC UMR CNRS 6000, Site IGE, 2 avenue Jean Moulin, 90000 Belfort, France

J. Heat Transfer 125(6), 1087-1095 (Nov 19, 2003) (9 pages) doi:10.1115/1.1603776 History: Received July 17, 2002; Revised June 13, 2003; Online November 19, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Thome, J. R., 1990, Enhanced Boiling Heat Transfer, Hemisphere, Washington, DC.
Webb, R. L., 1994, Principles of Enhanced Heat Transfer, Wiley, New York.
Barthau,  G., 1991, “Active Nucleation Site Density and Pool Boiling Heat Transfer-An Experimental Study,” Int. J. Heat Mass Transfer, 35(2), pp. 271–278.
Pioro,  I. L., 1999, “Experimental Evaluation of Constants for the Rohsenow Pool Boiling Correlation,” Int. J. Heat Mass Transfer, 42, pp. 2003–2013.
Hsieh,  S. S., and Weng,  C. J., 1997, “Nucleate Pool Boiling From Coated Surfaces in Saturated R-134a and R-407c,” Int. J. Heat Mass Transfer, 42, pp. 519–532.
Hsieh,  S. S., and Hsu,  P. T., 1994, “Nucleate Boiling Characteristics of R114, Distilled Water and R134a on Plain and Rib-Roughened Tube Geometries,” Int. J. Heat Mass Transfer, 37(10), pp. 1423–1432.
Erden, A. H., and Balkan, F., 1998, “Nucleate Pool Boiling Performance of Acetone-Ethanol and Methylene Chloride-Ethanol Binary Mixtures,” IJHMA, 32 (12), pp. 2403–2408.
Gorenflo,  D., Gremer,  F., Danger,  E., and Luke,  A., 2001, “Pool Boiling Heat Transfer to Binary Mixtures With Miscibility Gap: Experimental Results for a Horizontal Copper Tube With 4.35 mm O.D,” Exp. Therm. Fluid Sci., 25, pp. 243–254.
Memory,  S. B., Sugiyama,  D. C., and Marto,  P. J., 1995, “Nucleate Pool Boiling of R-114 and R114-oil Mixtures From Smooth and Enhanced Surfaces-I. Single Tubes,” Int. J. Heat Mass Transfer, 38, pp. 1347–1361.
Cieslinski,  J. T., 2002, “Nucleate Pool Boiling on Porous Metallic Coatings,” Exp. Therm. Fluid Sci., 25, pp. 557–564.
Vittala,  C. B. V., Gupta,  S. C., and Agarwal,  V. K., 2001, “Boiling Heat Transfer From a PTFE Coated Heating Tube to Alcohols,” Exp. Therm. Fluid Sci., 25, pp. 125–130.
Chang,  J. Y., and You,  S. M., 1997, “Enhanced Boiling Heat Transfer From Micro-Porous Cylindrical Surfaces in Saturated FC 87 and R123,” ASME J. Heat Transfer , 119, pp. 319–325.
Kang,  M. G., 2000, “Effect of Tube Inclination on Pool Boiling Heat Transfer,” ASME J. Heat Transfer, 122, pp. 188–192.
Cornwell,  K., and Houston,  S. D., 1994, “Nucleate Pool Boiling on Horizontal Tubes: A Convection-Based Correlation,” Int. J. Heat Mass Transfer, 37, Suppl. 1, pp. 303–309.
Stephan,  K., and Abdelsalam,  M., 1980, “Heat Transfer Correlations for Natural Convection Boiling,” Int. J. Heat Mass Transfer, 23, pp. 73–87.
Martin,  T. J., and Dulkravich,  G. S., 1998, “Inverse Determination of Steady Heat Convection Coefficient Distributions,” ASME J. Heat Transfer, 120, pp. 328–334.
Maillet,  D., Degiovanni,  A., and Pasquetti,  R., 1991, “Inverse Heat Conduction Applied to the Measurement of Heat Transfer Coefficient on a Cylinder: Comparison Between an Analytical and a Boundary Element Technique,” ASME J. Heat Transfer, 113, pp. 549–557.
Lin,  J. H., Chen,  C. K., and Yang,  Y. T., 2000, “The Inverse Estimation of the Thermal Boundary Behavior of a Heated Cylinder Normal to a Laminar Air Stream,” Int. J. Heat Mass Transfer, 43, pp. 3991–4001.
Hantasiriwan,  S., 2000, “Inverse Determination of Steady-State Heat Transfer Coefficient,” Int. Commun. Heat Mass Transfer, 27(8), pp. 1155–1164.
Aboukhachfe,  R., and Jarny,  Y., 2001, “Determination of Heat Sources and Heat Transfer Coefficient for Two-Dimensional Heat Flow—Numerical and Experimental Study,” Int. J. Heat Mass Transfer, 44, pp. 1309–1322.
Chen,  H. T., Lin,  S. Y., and Fang,  L. Ch., 2001, “Estimation of Surface Temperature in Two-Dimensional Inverse Heat Conduction Problems,” Int. J. Heat Mass Transfer, 44, pp. 1455–1463.
Alifanov, O. M., Artyukhin, E. A., and Rumyantsev, S. V., 1995, Extreme Methods for Solving Ill-Posed Problems With Applications to Inverse Heat Transfer Problems, Begell House, NY.
Blanc, G., Raynaud, M., and Bardon, T. H., 1998, “A Guide for the Use of the Function Specification Method for 2D Inverse Heat Conduction Problem,” Revue Générale de la thermique, 37 , pp. 17–25.
Loulou, T., Artyukhin, E. A., and Bardon, J. P., 1996, “Estimation of the Time Dependent Thermal Contact Resistance at the Mold-Casting Interface,” The 2th Int. Conf. On Inverse Problems in Eng., Le Croisic, France.
Holman, J. P., 1986, Heat Transfer, Mc Graw Hill Book Company.
Khan, M., 1995, “Amélioration des échanges thermiques en ébullition nucléée de fluides frigorigènes sur des cylindres horizontaux et méthode optique de mesure des caractéristiques géométriques d’un film liquide,” Thèse de Doctorat, Université de Franche Comté.
Louahlia-Gualous, H., Artyukhin, E. A., and Panday, P. K., 2002, “The Inverse Estimation of the Local Thermal Boundary Conditions in Two-Dimensional Heated Cylinder,” 4th Int. Conference on Inverse Problems in Engineering, Brazil.
Parken,  W. H., Fletcher,  L. S., Sernas,  V., and Han,  J. C., 1990, “Heat Transfer Through Falling Film Evaporation and Boiling on Horizontal Tubes,” ASME J. Heat Transfer, 112, pp. 744–750.


Grahic Jump Location
Geometry of two-dimensional cylinder
Grahic Jump Location
Measurement sections locations
Grahic Jump Location
Estimated results of IHCP: (a–b) circumferential Nusselt number versus φ, (c) local temperature residuals, and (d) criterion J versus iteration number.
Grahic Jump Location
Comparison of local Nusselt number profiles in two locations
Grahic Jump Location
Comparison of estimated and experimental results
Grahic Jump Location
Comparison of estimated and predicted mean heat transfer
Grahic Jump Location
Influence of measurement errors for qw,e=1200 W: (a) measured temperatures profiles, and (b) local Nusselt number.
Grahic Jump Location
Influence of measurement errors on mean heat transfer
Grahic Jump Location
Influence of systematic error on local heat transfer
Grahic Jump Location
Influence of systematic error on mean heat transfer




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In