0
TECHNICAL PAPERS: Evaporation, Boiling, and Condensation

Theoretical Model for Nucleate Boiling Heat and Mass Transfer of Binary Mixtures

[+] Author and Article Information
Jürgen Kern, Peter Stephan

Chair of Technical Thermodynamics, Darmstadt University of Technology, Petersenstrasse 30, 64287 Darmstadt, Germany

J. Heat Transfer 125(6), 1106-1115 (Nov 19, 2003) (10 pages) doi:10.1115/1.1622717 History: Received August 05, 2002; Revised August 26, 2003; Online November 19, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kenning,  D. B. R., 1997, “New Developments in Pool Boiling,” Int. J. Refrig., 20(8), pp. 534–544.
Celata,  G. P., Cumo,  M., and Setaro,  T., 1994, “A Review of Pool and Forced Convective Boiling of Binary Mixtures,” Exp. Therm. Fluid Sci., 9, pp. 367–381.
Inoue,  T., Kawae,  N., and Monde,  M., 1998, “Characteristics of Heat Transfer Coefficient During Nucleate Pool Boiling of Binary Mixtures,” Heat Mass Transfer, 33, pp. 337–344.
Gorenflo, D., and Köster, R., 1999, “Pool Boiling Heat Transfer from Horizontal Tubes to Mixtures,” Convective Flow and Pool Boiling, M. Lehner and F. Mayinger, eds., Taylor and Francis, Philadelphia, pp. 3–22.
Dhir,  V. K., 2001, “Numerical Simulations of Pool-Boiling Heat Transfer,” AIChE J., 47(4), pp. 813–834.
Stephan,  P., and Hammer,  J., 1994, “A New Model for Nucleate Boiling Heat Transfer,” Heat Mass Transfer, 30, pp. 119–125.
Mann, M., and Stephan, K., 2000, “Prediction of Bubble Departure Diameters in Nucleate Boiling,” Proceedings 3rd European Thermal Sciences Conference, E. Hahne, W. Heidemann, and K. Spindler, eds., Edizioni ETS, pp. 749–754.
Son,  G., Dhir,  V. K., and Ramaujapu,  N., 1999, “Dynamics and Heat Transfer Associated with a Single Bubble During Nucleate Boiling on a Horizontal Surface,” ASME J. Heat Transfer , 121, pp. 623–631.
Bai,  Q., and Fujita,  Y., 1999, “Numerical Simulation of the Growth for a Single Bubble in Nucleate Boiling,” Therm. Sci. Eng., 7, pp. 45–53.
Wayner,  P. C., Kao,  Y. K., and LaCroix,  L. V., 1976, “The Interline Heat Transfer Coefficient on an Evaporating Wetting Film,” Int. J. Heat Mass Transfer, 19, pp. 487–492.
Stephan,  P., and Busse,  C. A., 1992, “Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls,” Int. J. Heat Mass Transfer, 35(2), pp. 383–391.
Stephan, K., 1992, Heat Transfer in Condensation and Boiling, Springer-Verlag, Berlin.
Fritz,  W., 1935, “Berechnung des Maximalvolumens von Dampfblasen,” Phys. Z., 11, pp. 379–384.
Benjamin,  R. J., and Balakrishnan,  A. R., 1997, “Nucleation Site Density in Pool Boiling of Binary Mixtures: Effect of Surface Micro-roughness and Surface and Liquid Physical Properties,” Can. J. Chem. Eng., 75, pp. 1080–1089.
Krupiczka,  R., Rotkegel,  A., and Ziobrowski,  Z., 2000, “The Influence of Mass Transfer on the Heat Transfer Coefficients during the Boiling of Multicomponent Mixtures,” Int. J. Therm. Sci., 39, pp. 667–672.
Israelachvili, J. N., 1992, Intermolecular and Surface Forces, Academic Press, Philadelphia.
Dzyaloshinskii,  I. E., Lifshitz,  E. M., and Pitaevskii,  L. P., 1961, “The General Theory of van der Waals Forces,” Adv. Phys., 10, pp. 165–209.
Derjaguin,  B. V., and Chureav,  N. V., 1977, “Disjoining Pressure of Thin Layers of Binary Solutions,” J. Colloid Interface Sci., 62, pp. 369–380.
Wayner,  P. C., 1999, “Intermolecular Forces in Phase-Change Heat Transfer: 1998 Kern award review,” AIChE J., 45(10), pp. 2055–2068.
Schrage, R. W., 1953, A Theoretical Study of Interphase Mass Transfer, Columbia University Press, New York.
Kern, J., 2002, “Modellierung und numerische Berechnung des Wärmeübergangs beim Blasensieden binärer Gemische,” Ph.D. thesis, Fortschritt-Berichte VDI, 3 (727), VDI-Verlag, Düsseldorf.
Paul,  B., 1962, “Compilation of Evaporation Coefficients,” ARS Journal, 32, pp. 1321–1328.
Carey, V. P., 1992, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Hemisphere, Washington.
McGillis,  W. R., and Carey,  V. P., 1996, “On the Role of Marangoni Effect on the Critical Heat Flux for Pool Boiling of Binary Mixtures,” ASME J. Heat Transfer , 118, pp. 103–109.
Fuchs, T., 2001, “Modellierung und numerische Berechnung des konvektiven Wärme- und Stofftransports um einer wachsenden Dampfblase,” Diploma thesis, Chair of Technical Thermodynamics, University of Technology, Darmstadt.
Genske, P., and Stephan, K., 2001, “Nucleate Boiling—Numerical Simulation of Heat Transfer at Moderate Heat Fluxes,” paper B5.7, Proc. of the International Institute of Refrigeration Conference, Commission B1, Thermophysical Properties and Transfer Processes of New Refrigerants, Paderborn, Germany.
Ingenieursbureau Sepra, 1993, SEPRAN, A Finite Element Code. User manual, Leidscham.
Hammer, J., and Stephan, P., 1996, “The role of Micro-Region Phenomena on Nucleate Boiling Heat Transfer,” Proceedings 2nd European Thermal Sciences and 14th UIT National Heat Transfer Conference, G. P. Celata, P. Di Marco, and A. Mariani, eds., Edizioni ETS, pp. 467–474.
Bednar, W., and Bier, K., 1994, “Wärmeübergang beim Blasensieden von binären Kohlenwasserstoffgemischen,” Ph.D. thesis, Fortschritt-Berichte VDI, 3 (357), VDI-Verlag, Düsseldorf.
National Institute of Standards and Technology, 1998, Standard Refence Database 23—Version 6.01, Gaithersburg.
VDI-Wärmeatlas, 1997, VDI-Verlag, Düsseldorf.
Mann,  M., and Stephan,  K., 2000, “Influence of Convection on Nucleate Boiling Heat Transfer around Horizontal Tubes,” Multiphase Sci. Technol., 12(3), pp. 1–13.

Figures

Grahic Jump Location
Comparison of computational results with data from experiments 26 of the binary mixture propane/n-butane for different compositions (p*=0.2, q̇m=2×103 W/m2)
Grahic Jump Location
Comparison of computational results with data from experiments 26 of the binary mixture propane/n-butane for different compositions (p*=0.1, q̇m=1×104 W/m2)
Grahic Jump Location
Comparison of computational results with data from experiments 26 of the binary mixture propane/n-butane for different compositions (p*=0.1, q̇m=4×103 W/m2)
Grahic Jump Location
Comparison of computational results with data from experiments 26 of the binary mixture propane/n-butane for different compositions (p*=0.03, q̇m=1×104 W/m2)
Grahic Jump Location
Comparison of computational results with data from experiments 26 of the binary mixture ethane/propane for different compositions (p*=0.1, q̇m=2×103 W/m2)
Grahic Jump Location
Single bubble subsystem and computational domains
Grahic Jump Location
Significant phenomena in the micro region
Grahic Jump Location
Pressure balance at a curved liquid-vapor phase interface in the vicinity of a solid wall
Grahic Jump Location
Variation of the liquid-vapor equilibrium taking into account the influence of the capillary pressure effect
Grahic Jump Location
Thermal boundary conditions in the macro region
Grahic Jump Location
Finite element distribution in the macro region
Grahic Jump Location
Liquid film thickness, heat flux, velocity vectors, and apparent contact angle in the micro region of the binary mixture propane/n-butane (yl,1,bulk=0.667, p*=0.2, Tout−Tsat=10.74 K, ξads=0.023 mm, r=0.057 mm)
Grahic Jump Location
Liquid and vapor mass fraction of the more volatile component propane in the micro region of the binary mixture propane/n-butane (yl,1,bulk=0.667, p*=0.2, Tout−Tsat=10,74 K, ξads=0.023 mm, r=0.057 mm)
Grahic Jump Location
Temperatures in the micro region of the binary mixture propane/n-butane (yl,1,bulk=0.667, p*=0.2, Tout−Tsat=10,74 K, ξads=0.023 mm, r=0.057 mm)
Grahic Jump Location
Liquid-vapor phase equilibrium in the micro region of the binary mixture propane/n-butane (yl,1,bulk=0.667,p*=0.2, Tout−Tsat=10, 74 K, ξads=0.023 mm, r=0.057 mm)
Grahic Jump Location
Temperature distribution in the macro region of the binary mixture propane/n-butane (yl,1,bulk=0.667, p*=0.2, Tout−Tsat=10, 74 K, ξads=0.023 mm, r=0.057 mm)
Grahic Jump Location
Calculated heat transfer coefficients at different bubble radii of the binary mixture propane/n-butane (yl,1,bulk=0.667, p*=0.2, Tout−Tsat=10,74 K)
Grahic Jump Location
Calculated bubble radii versus time of the binary mixture propane/n-butane (yl,1,bulk=0.667, p*=0.2, Tout−Tsat=10,74 K)
Grahic Jump Location
Comparison of computational results with data from experiments 26 of the binary mixture propylene/propane for different compositions (p*=0.03, q̇m=2×104 W/m2)
Grahic Jump Location
Comparison of computational results with data from experiments 26 of the binary mixture propane/n-butane for different compositions (p*=0.2, q̇m=2×104 W/m2)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In