0
TECHNICAL NOTES

A Maximum Entropy Solution for a Two-Dimensional Inverse Heat Conduction Problem

[+] Author and Article Information
Sun Kyoung Kim, Woo Il Lee

Department of Mechanical Engineering, Seoul National University, Seoul 151-742, Korea

J. Heat Transfer 125(6), 1197-1205 (Nov 19, 2003) (9 pages) doi:10.1115/1.1597613 History: Received August 07, 2001; Revised April 08, 2003; Online November 19, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ozisik, M. N., and Orlande, H. R. B., 2000, Inverse Heat Transfer: Fundamentals and Applications, Taylor & Francis, New York.
Alifanov, O. M., 1994, Inverse Heat Transfer Problems, International Series in Heat and Mass Transfer, Springer-Verlag, New York.
Beck, J. V., Blackwell, B., and St. Clair, C. R., 1985, Inverse Heat Conduction: Ill-Posed Problems, Wiley, New York.
Beck,  J. V., and Woodbury,  K. A., 1998, “Inverse Problems and Parameter Estimation: Integration of Measurements and Analysis,” Meas. Sci. Technol., 9(6), pp. 839–847.
Alifanov,  O. M., 1997, “Mathematical and Experimental Simulation in Aerospace System Verification,” Acta Astronaut., 41(1), pp. 43–52.
Kim,  S. K., Koo,  B. Y., and Lee,  W. I., 2000, “The Evaluation of the Heat Transfer Coefficient During Hot-Jet Impingement Using an Inverse Method With Regularization Parameter Optimization,” International Journal of Transport Phenomena, 2(3), pp. 173–186.
Huang,  X. C., Bartsch,  G., and Schroederrichter,  D., 1994, “Quenching Experiments With a Circular Test Section of Medium Thermal Capacity Under Forced-Convection of Water,” Int. J. Heat Mass Transfer, 37(5), pp. 803–818.
Liauh,  C. T., Hills,  R. G., and Roemer,  R. B., 1993, “Comparison of the Adjoint and Influence Coefficient Methods for Solving the Inverse Hyperthermia Problem,” ASME J. Biomech. Eng., 115(1), pp. 63–71.
Tikhonov, A. N., and Arsenin, V. I. A., 1977, Solutions of Ill-Posed Problems, Scripta Series in Mathematics, Washington, Winston, New York, distributed solely by Halsted Press.
D’Souza,  N., 1976, “Numerical-Solution of One-Dimensional Inverse Transient Heat-Conduction by Finite-Difference Method,” Mech. Eng. (Am. Soc. Mech. Eng.), 98(5), p. 105.
Raynaud,  M., and Bransier,  J., 1986, “A New Finite-Difference Method for the Nonlinear Inverse Heat-Conduction Problem,” Numer. Heat Transfer, 9(1), pp. 27–42.
Weber,  C. F., 1981, “Analysis and Solution of the Ill-Posed Inverse Heat-Conduction Problem,” Int. J. Heat Mass Transfer, 24(11), pp. 1783–1792.
Neto,  A. J. S., and Ozisik,  M. N., 1992, “2-Dimensional Inverse Heat-Conduction Problem of Estimating the Time-Varying Strength of a Line Heat-Source,” J. Appl. Phys., 71(11), pp. 5357–5362.
Jarny,  Y., Ozisik,  M. N., and Bardon,  J. P., 1991, “A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat-Conduction,” Int. J. Heat Mass Transfer, 34(11), pp. 2911–2919.
Scarpa,  F., and Milano,  G., 1995, “Kalman Smoothing Technique Applied to the Inverse Heat-Conduction Problem,” Numer. Heat Transfer, Part B, 28(1), pp. 79–96.
Park,  H. M., and Lee,  J. H., 1998, “A Method of Solving Inverse Convection Problems by Means of Mode Reduction,” Chem. Eng. Sci., 53(9), pp. 1731–1744.
Battaglia,  J. L., 2002, “A Modal Approach to Solve Inverse Heat Conduction Problems,” Inverse Probl. Eng., 10(1), pp. 41–63.
Beck,  J. V., and Murio,  D. A., 1986, “Combined Function Specification-Regularization Procedure for Solution of Inverse Heat-Conduction Problem,” AIAA J., 24(1), pp. 180–185.
Dowding,  K. J., and Beck,  J. V., 1999, “A Sequential Gradient Method for the Inverse Heat Conduction Problem (Ihcp),” ASME J. Heat Transfer, 121(2), pp. 300–306.
Reinhart,  H. J., and Hao,  N. H., 1996, “A Sequential Conjugate Gradient Method for the Stable Numerical Solution to Inverse Heat Conduction Problems,” Inverse Probl. Eng., 2, pp. 263–272.
Kim,  S. K., Lee,  W. I., and Lee,  J. S., 2002, “Solving a Nonlinear Inverse Convection Problem Using the Sequential Gradient Method,” KSME International Journal, 16(5), pp. 710–719.
Park,  H. M., and Jung,  W. S., 2001, “On the Solution of Multidimensional Inverse Heat Conduction Problems Using an Efficient Sequential Method,” ASME J. Heat Transfer, 123(6), pp. 1021–1029.
Beck,  J. V., Blackwell,  B., and HajiSheikh,  A., 1996, “Comparison of Some Inverse Heat Conduction Methods Using Experimental Data,” Int. J. Heat Mass Transfer, 39(17), pp. 3649–3657.
Wu, N., 1997, The Maximum Entropy Method, Springer Series in Information Sciences, 32, Springer, New York.
Skilling,  J., and Bryan,  R. K., 1984, “Maximum-Entropy Image-Reconstruction—General Algorithm,” Mon. Not. R. Astron. Soc., 211(1), p. 111.
Golan,  A., Judge,  G., and Robinson,  S., 1994, “Recovering Information From Incomplete or Partial Multisectoral Economic Data,” Rev. Econ. Stat., 76(3), pp. 541–549.
Ramos,  F. M., and Giovannini,  A., 1995, “Solution of a Multidimensional Heat-Conduction Inverse Problem Using the Finite Analytic Method and the Principle of Maximum-Entropy,” Int. J. Heat Mass Transfer, 38(1), pp. 101–111.
Lair,  P., Dumoulin,  J., and Millan,  P., 1998, “Inverse Method for Flux Characterization Using Infrared Thermography in Die Forging,” Numer. Heat Transfer, Part A, 33(3), pp. 267–277.
Muniz,  W. B., Ramos,  F. M., and Velho,  H. F. D., 2000, “Entropy and Tikhonov-Based Regularization Techniques Applied to the Backwards Heat Equation,” Computers & Mathematics with Applications, 40(8–9), pp. 1071–1084.
Kim,  S. K., and Lee,  W. I., 2002, “Solution of Inverse Heat Conduction Problems Using Maximum Entropy Method,” Int. J. Heat Mass Transfer, 45(2), pp. 381–391.
Reklaitis, G. V., Ravindran, A., and Ragsdell, K. M., 1983, Engineering Optimization: Methods and Applications, Wiley, New York.
Tan,  Y., and Deng,  C., 2000, “Solving for a Quadratic Programming With a Quadratic Constraint Based on a Neural Network Frame,” Neurocomputing, 30(1–4), pp. 117–128.
McIntyre,  N. S., Pratt,  A. R., Piao,  H., Maybury,  D., and Splinter,  S. J., 1999, “Resolution Enhancement of X-Ray Photoelectron Spectra by Maximum Entropy Deconvolution,” Appl. Surf. Sci., 145, pp. 156–160.
Rohsenow, W. M., Hartnett, J. P., and Cho, Y. I., 1998, Handbook of Heat Transfer, 3rd ed., Mcgraw-Hill Handbooks, McGraw-Hill, New York.
Lloyd, J. M., 1975, Thermal Imaging System, Plenum Press, New York.
Mayer,  R., Henkes,  R., and Van Ingen,  J. L., 1998, “Quantitative Infrared-Thermography for Wall-Shear Stress Measurement in Laminar Flow,” Int. J. Heat Mass Transfer, 41(15), pp. 2347–2360.
Ekkad,  S. V., and Han,  J. C., 1996, “Heat Transfer Inside and Downstream of Cavities Using Transient Liquid Crystal Method,” J. Thermophys. Heat Transfer, 10(3), pp. 511–516.
Allison,  S. W., and Gillies,  G. T., 1997, “Remote Thermometry With Thermographic Phosphors: Instrumentation and Applications,” Rev. Sci. Instrum., 68(7), pp. 2615–2650.
Kwon,  P., Schiemann,  T., and Kountanya,  R., 2001, “An Inverse Estimation Scheme to Measure Steady-State Tool-Chip Interface Temperatures Using an Infrared Camera,” Int. J. Mach. Tools Manuf., 41(7), pp. 1015–1030.
Valvano,  J. W., 1992, “Temperature Measurements,” Adv. Heat Transfer, 23, pp. 359–436.
Jaynes,  E. T., 1957, “Information Theory and Statistical Mechanics,” Phys. Rev., 106, pp. 620–630.
Shannon,  C. E., 1948, “A Mathematical Theory of Communication,” Bell Syst. Tech. J., 27, pp. 379–423.
Graham,  N. Y., 1983, “Smoothing With Periodic Cubic-Splines,” Bell Syst. Tech. J., 62(1), pp. 101–110.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, Hemisphere Pub. Corp., New York.
Raynaud,  M., and Beck,  J. V., 1988, “Methodology for Comparison of Inverse Heat-Conduction Methods,” ASME J. Heat Transfer, 110(1), pp. 30–37.
Kim, S. K., Jung, B. S., Lee, J. S., and Lee, W. I., 2002, “An Inverse Estimation of Surface Temperature Using the Maximum Entropy Method,” in Proceedings of the Twelfth International Heat Transfer Conference, Elsevier SAS.
Lawrence, C., Zhou, Z. L., and Tits, A. L., 1997, User’s Guide for Cfsqp Version 2.5, Electrical Engineering Dept. and Institute for System Research, University of Maryland, College Park, MD.
IMSL Math/Library User’s Guide, 1994, Visual Numerics, http://vni.com
Donoho,  D. L., Johnstone,  I. M., Hoch,  J. C., and Stern,  A. S., 1992, “Maximum-Entropy and the Nearly Black Object,” J. R. Stat. Soc. Ser. B. Methodol., 54(1), pp. 41–81.

Figures

Grahic Jump Location
Overview of the considered inverse problem
Grahic Jump Location
Overview of the inverse problem in the test cases
Grahic Jump Location
Noisy measurement data (σ=0.1°C) for single impulse heat flux: (a) over time and space domain; (b) time-varying measurement data at x=0.35 and x=0.65
Grahic Jump Location
Heat fluxes estimated with (a) CGM and (b) MEM using exact measurement data for single impulse heat flux
Grahic Jump Location
Heat fluxes estimated with (a) CGM and (b) MEM using noisy measurement data (σ=0.1°C) for single impulse heat flux
Grahic Jump Location
Heat fluxes estimated with (a) CGM and (b) MEM using noisy measurement data (σ=0.1°C) for multiple impulse heat fluxes
Grahic Jump Location
Heat fluxes estimated with (a) CGM and (b) MEM using noisy measurement data (σ=0.1°C) for single impulse heat flux. Underdetermined case with fewer sensors (P=11 and M=20).
Grahic Jump Location
(a) Heat fluxes estimated with (b) CGM and (c) MEM using noisy measurement data (σ=0.1°C) for rectangular heat flux
Grahic Jump Location
Heat fluxes estimated with (a) CGM and (b) MEM using noisy measurement data (σ=0.1°C) for sinusoidal heat flux

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In