0
TECHNICAL PAPERS: Micro/Nanoscale Heat Transfer

On the Group Front and Group Velocity in a Dispersive Medium Upon Refraction From a Nondispersive Medium

[+] Author and Article Information
Z. M. Zhang, Keunhan Park

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

J. Heat Transfer 126(2), 244-249 (May 04, 2004) (6 pages) doi:10.1115/1.1668035 History: Received May 08, 2003; Revised December 23, 2003; Online May 04, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Born, M., and Wolf, E., 1999, Principles of Optics, 7th ed., Cambridge University Press, Cambridge, UK, Chap. 1.
Hamilton,  W. R., 1839, “Researches Respecting Vibration, Connected with the Theory of Light,” Proc. R. Ir. Acad., Sect. A, 1, p. 267, and p. 341.
Stokes, G. G., 1966, Mathematical and Physical Papers 5 , Johnson Reprint Co., New York, p. 362 (Problem 11 of the Smith’s Prize Examination Papers, Feb. 2, 1876).
Lord Rayleigh, 1896, The Theory of Sound, 2nd ed., Macmillan and Co., London, UK (First ed. Published, 1878).
Havelock, T. H., 1914, The Propagation of Disturbances in Dispersive Media, Cambridge University Press, Cambridge, UK.
Brillouin, L., 1960, Wave Propagation and Group Velocity, Academic Press, New York.
Lighthill, J., 1978, Waves in Fluids, Cambridge University Press, Cambridge, UK.
Pedlosky, J., 1982, Geophysical Fluid Dynamics, Springer-Verlag, New York.
Shelby,  R. A., Smith,  D. R., and Schultz,  S., 2001, “Experimental Verification of a Negative Index of Refraction,” Science, 292, pp. 77–79.
Veselago,  V. G., 1968, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp., 10(4), pp. 509–514.
Pendry,  J. B., 2000, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett., 85(18), pp. 3966–3969.
Zhang,  Z. M., and Fu,  C. J., 2002, “Unusual Photon Tunneling in the Presence of a Layer with a Negative Refractive Index,” Appl. Phys. Lett., 80(6), pp. 1097–1099.
Fu,  C. J., and Zhang,  Z. M., 2003, “Transmission Enhancement Using a Negative Refractive-Index Layer,” Microscale Thermophys. Eng., 7(3), pp. 221–234.
Valanju,  P. M., Walser,  R. M., and Valanju,  A. P., 2002, “Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous,” Paper No. 187401, Phys. Rev. Lett., 88(18).
Smith,  D. R., Schurig,  D., and Pendry,  J. B., 2002, “Negative Refraction of Modulated Electromagnetic Waves,” Appl. Phys. Lett., 81(15), pp. 2713–2715.
Tailleux, R., 2003, private communication, unpublished.
Kong, J. A., 1990, Electromagnetic Wave Theory, 2nd ed., John Wiley & Sons, Inc., New York.
Bers,  A., 2000, “Note on Group Velocity and Energy Propagation,” Am. J. Phys., 68(5), pp. 482–484.
Ruppin,  R., 2002, “Electromagnetic Energy Density in a Dispersive and Absorptive Material,” Phys. Lett. A, 299, pp. 309–312.
Dogariu,  A., Kuzmich,  A., and Wang,  L. J., 2001, “Transparent Anomalous Dispersion and Superluminal Light-Pulse Propagation at a Negative Group Velocity,” Paper No. 053806, Phys. Rev. A, 63(5), p. 05386.
Loudon,  R., 1970, “The Propagation of Electromagnetic Energy through an Absorbing Dielectric,” J. Phys. A, 3, pp. 233–245.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill, New York.
Palik, E. D., ed., 1991, Handbook of Optical Constants of Solids II, Academic Press, San Diego, CA, pp. 919–955.
Smith,  D. R., Padilla,  W. J., Vier,  S. C., Nemat-Nasser,  S. C., and Schultz,  S., 2000, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett., 84(18), pp. 4184–4187.
Pendry,  J. B., and Smith,  D. R., “Comments,” Paper No. 029703 Phys. Rev. Lett., 90(2); Reply of Valanju, Walser, and Valanju, ibid., Paper No. 029704.

Figures

Grahic Jump Location
A monochromatic wave propagating in one dimension
Grahic Jump Location
A monochromatic wave propagating in two dimensions
Grahic Jump Location
Propagation of a modulated wave in (a) a positive-index material (PIM), and (b) a negative-index material (NIM)
Grahic Jump Location
The movement of the wave group that is incident on MgO (n2=1.395) at λ0=9.091 μm(ω=2.072×1014 rad/s) from vacuum (n1=1.0), for θ1=45 deg and Δω/ω=0.1. The calculated values are ng=2.488;θg=30.44 deg; θgf=15.97 deg; Δθp=2.65 deg.
Grahic Jump Location
The movement of the wave group that is incident on the NIM from vacuum (n1=1.0) at λ0=5.996 cm(ω=3.14×1010 rad/s), for θ1=45 deg and Δω/ω=0.01. The calculated values are n2=−1.262;ng=6.467;θg=−34.70 deg; θgf=4.88 deg; Δθp=2.37 deg.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In