0
TECHNICAL PAPERS: Micro/Nanoscale Heat Transfer

Observation of Femtosecond Laser-Induced Ablation in Crystalline Silicon

[+] Author and Article Information
Tae Y. Choi

Institute of Energy Technology, Swiss Federal Institute of Technology Zurich, Zurich, CH-8092 Switzerlande-mail: choi@ltnt.iet.mavt.ethz.ch

Costas P. Grigoropoulos

Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720-1740e-mail: cgrigoro@me.berkeley.edu

J. Heat Transfer 126(5), 723-726 (Nov 16, 2004) (4 pages) doi:10.1115/1.1795224 History: Received April 22, 2003; Revised February 27, 2004; Online November 16, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sokolowski-Tinten,  K., and von der Linde,  D., 2000, “Generation of Dense Electron-Hole Plasmas in Silicon,” Phys. Rev. B, 61, pp. 2643–2650.
Tom,  H. W. K., Aumiller,  G. D., and Brito-Cruz,  C. H., 1988, “Time-Resolved Study of Laser-Induced Disorder of Si Surfaces,” Phys. Rev. Lett., 60, pp. 1438–1441.
Downer,  M. C., Fork,  R. L., and Shank,  C. V., 1985, “Femtosecond Imaging of Melting and Evaporation at a Photoexcited Silicon Surface,” J. Opt. Soc. Am. B, 2, pp. 595–599.
Guidotti,  D., Driscoll,  T. A., and Gerritsen,  H. J., 1983, “Second Harmonic Generation in Centro-Symmetric Semiconductors,” Solid State Commun., 46, pp. 337–340.
Stampfli,  P., and Bennemann,  K. H., 1990, “Theory for the Instability of the Diamond Structure of Si, Ge, and C Induced by a Dense Electron-Hole Plasma,” Phys. Rev. B, 42, pp. 7163–7173.
Momma,  C., Nolte,  S., Kamlage,  G., Von Alvensleben,  F., and Tunnermann,  A., 1998, “Beam Delivery of Femtosecond Laser Radiation by Diffractive Optical Elements,” Appl. Phys. A: Mater. Sci. Process., 67, pp. 517–520.
Pronko,  P. P., Dutta,  S. K., Squier,  J., Rudd,  J. V., Du,  D., and Mourou,  G., 1995, “Machining of Sub-Micron Holes Using a Femtosecond Laser at 800 nm,” Opt. Commun., 114, pp. 106–110.
Wu,  M. C., 1997, “Micromachining for Optical and Optoelectronic Systems,” Proc. IEEE, 85, pp. 1833–1856.
Reitze,  D. H., Wang,  X., Ahn,  H., and Downer,  M. C., 1989, “Femtosecond Laser Melting of Graphite,” Phys. Rev. B, 40, pp. 11986–11989.
Shank,  C., Yen,  R., and Hirlimann,  C., 1983, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett., 50, pp. 454–457.
Van Vechten,  J., Tsu,  R., and Saris,  F., 1979, “Nonthermal Pulsed Laser Annealing of Si, Plasma Annealing,” Phys. Lett., 74A, pp. 422–426.
Siders,  C., Cavalleri,  A., Sokolowski-Tinten,  K., Toth,  C., Guo,  T., Kammler,  M., von Hoegen,  M., Wilson,  K., von der Linde,  D., and Barty,  C., 1999, “Detection of Nonthermal Melting by Ultrafast X-Ray Diffraction,” Science, 286, pp. 1340–1342.
Rose-Petruck,  C., Jimenez,  R., Guo,  T., Cavalleri,  A., Siders,  C., Raksi,  F., Squier,  J., Walker,  B., Wilson,  K., and Barty,  C., 1999, “Picosecond-Milliangstrom Lattice Dynamics Measured by Ultrafast X-Ray Diffraction,” Nature (London), 398, pp. 310–312.
Cavalleri,  A., Siders,  C., Brown,  F., Leitner,  D., Toth,  C., Squier,  J., Barty,  C., and Wilson,  K., 2000, “Anharmonic Lattice Dynamics in Germanium Measured With Ultrafast X-Ray Diffraction,” Phys. Rev. Lett., 85, pp. 586–589.
Von der Linde,  D., and Fabricius,  N., 1982, “Observation of an Electronic Plasma in Picosecond Laser Annealing of Silicon,” Appl. Phys. Lett., 41, pp. 991–3.
Sokolowski-Tinten,  K., Solis,  J., Bialkowski,  J., Siegel,  J., Afonso,  C. N., and von der Linde,  D., 1998, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett., 81, pp. 3679–3682.
Govorkov,  S. V., Schroder,  Th., Shumay,  I. L., and Heist,  P., 1992, “Transient Gratings and Second-Harmonic Probing of the Phase Transformation of a GaAs Surface Under Femtosecond Laser Irradiation,” Phys. Rev. B, 46, pp. 6864–6868.
Sokolowski-Tinten,  K., Bialkowski,  J., and von der Linde,  D., 1995, “Ultrafast Laser-Induced Order-Disorder Transitions in Semiconductors,” Phys. Rev. B, 51, pp. 14186–14198.
Shank,  C. V., Yen,  R., and Hirlimann,  C., 1983, “Femtosecond-Time-Resolved Surface Structural Dynamics of Optically Excited Silicon,” Phys. Rev. Lett., 51, pp. 900–902.
Silvestrelli,  P. L., Alavi,  A., Parrinello,  M., and Frenkel,  D., 1996, “Ab Initio Molecular Dynamics Simulation of Laser Melting of Silicon,” Phys. Rev. Lett., 77, pp. 3149–3152.
Born, M., and Wolf, E., 1999, Principles of Optics, Cambridge University, Cambridge, England.
Young,  J., and van Driel,  H., 1982, “Ambipolar Diffusion of High-Density Electrons and Holes in Ge, Si, and GaAs: Many-Body Effects,” Phys. Rev. B, 26, pp. 2147–2158.
Ballarotto,  V. W., Siegrist,  K., Phaneuf,  R. J., Williams,  E. D., Yang,  W. C., and Nemanich,  R. J., 2001, “Photon Energy Dependence of Contrast in Photoelectron Emission Microscopy of Si Devices,” Appl. Phys. Lett., 78, pp. 3547–3549.
Kittel, C., 1996, Introduction to Solid State Physics, Seventh Edition, Wiley, New York.
Choi,  T. Y., and Grigoropoulos,  C. P., 2002, “Plasma and Ablation Dynamics in Ultrafast Laser Processing of Crystalline Silicon,” J. Appl. Phys., 92, pp. 4918–4925.
Duley, W. W., 1983, Laser Processing and Analysis of Materials, Plenum Press, New York.
Capinski,  W. S., and Maris,  H. J., 1996, “Improved Apparatus for Picosecond Pump-and Probe Optical Measurements,” Rev. Sci. Instrum., 67, pp. 2720–2726.
Sokolowski-Tinten,  K., Bialkowski,  J., Cavalleri,  A., von der Linde,  D., Oparin,  A., Meyer-ten-Vehn,  J., and Anisimov,  S., 1998, “Transient States of Matter During Laser Ablation,” Phys. Rev. Lett., 81, pp. 224–227.
Cavalleri,  A., Sokolowski-Tinten,  K., Bialkowski,  J., Schreiner,  M., and von der Linde,  D., 1999, “Femtosecond Melting and Ablation of Semiconductors Studied With Time of Flight Mass Spectroscopy,” J. Appl. Phys., 85, pp. 3301–3309.

Figures

Grahic Jump Location
Temporal evolution of calculated surface electron density and reflectivity at λ=400 nm with no consideration of phase change. (Note the electron density at 0.5 ps is 2×1022 cm−3.) The laser fluence is 1.5 J/cm2. The critical density for lattice instability has been revealed theoretically at 1022 cm−3 (Ref. 5).
Grahic Jump Location
Schematic diagram of experimental setup (DM: dichroic mirror; NLC: nonlinear crystal; λ/4: quarter wave plate; L: lens; M: Mirror). The pump beam (solid line) and probe beam (dotted line) are normally incident on the sample.
Grahic Jump Location
Time-resolved surface images at fluence of 1.5 J/cm2. Highly reflecting phase is identified below 1 ps. The ablation starts at around 10 ps.
Grahic Jump Location
(a) Short time scale and (b) longer time scale time-resolved surface reflectivity traces. Reflectivity at the early stage approaches that of liquid silicon.
Grahic Jump Location
Reflectivity as a function of layer thickness for liquid silicon and solid-state plasma. (The low plasma density, 2×1022 cm−3, is utilized for predicting the relectivity at 0.5 ps.)
Grahic Jump Location
Comparison of time-resolved image sequence (a) 2.9 and (b) 4.6 J/cm2. The bright spot at the center of the irradiated zone persists longer at higher laser fluence.
Grahic Jump Location
Surface images taken at 500 ps for different energy densities for (a) 0.4, (b) 1.5, (c) 2.9, and (d) 4.6 J/cm2. Peripheral dark rings at higher fluences correspond to rarefaction wave toward the sample surface.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In