0
TECHNICAL PAPERS: Thermal Systems

Thermal Analysis of Laser-Densified Dental Porcelain Bodies: Modeling and Experiments

[+] Author and Article Information
K. Dai, X. Li, L. Shaw

Department of Metallurgy and Materials Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA

J. Heat Transfer 126(5), 818-825 (Nov 16, 2004) (8 pages) doi:10.1115/1.1795812 History: Received September 23, 2003; Revised June 30, 2004; Online November 16, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Cameron, T. B., 2004, private communication, Dentsply Cermco, Burlington, NJ.
Beaman, J. J., Barlow, J. W., Bourell, D. L., Crawford, R. H., Marcus, H. L., and McAlea, K. P., 1997, Solid Freeform Fabrication: A New Direction in Manufacturing, Kluwer Academic Publishers, MA.
Shaw, L., Li, X.-X., Wang, J.-W., Marcus, H. L., Cameron, T. B., and Kennedy, C., 2002, “Dental Restoration Through Laser Densification of Dental Porcelain Powder,” in Rapid Prototyping of Materials, F. D. S. Marquis and D. L. Bourell, eds., TMS, Warrendale, PA, pp. 107–118.
Wang, J.-W., Li, X.-X., Shaw, L., Marcus, H. L., Cameron, T. B., and Kennedy, C., 2002, “Studies on Slurry Extrusion for Dental Restoration,” in the Proceedings of the 13th Annual SFF Symposium, D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds., The University of Texas at Austin, pp. 83–91.
Li, X. X., Wang, J. W., Augustine, A., Shaw, J. L., Marcus, H. L., and Cameron, T. B., 2001, “Microstructure Evaluation for Multi-Materials Laser Densification of Dental Porcelains,” in the Proceedings of the 12th Annual SFF Symposium, D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds., The University of Texas at Austin, pp. 195–202.
Weinsein, M., Katz, S., and Weinstein, A. B., 1962, “Fused Porcelain-to-Metal Teeth,” US Patent #: 3,052,982.
Mackert,  J. R., and Williams,  A. L., 1996, “Microcracks in Dental Porcelain and Their Behavior during Multiple Firing,” J. Dent. Res., 75(7), pp. 1484–1490.
Mackert,  J. R., and Evans,  A. L., 1991, “Effect of Cooling Rate on Leucite Volume Fraction in Dental Porcelains,” J. Dent. Res., 70, pp. 137–139.
Mackert,  J. R., Rueggeberg,  F. A., Lockwood,  P. E., Evans,  A. L., and Thompson,  W. O., 1994, “Isothermal Anneal Effect on Microcrack Density around Leucite Particles in Dental Porcelain,” J. Dent. Res., 73, pp. 1221–1227.
Kandis,  M., and Bergman,  T. L., 1997, “Observation, Prediction, and Correlation of Geometric Shape Evolution Induced by Non-Isothermal Sintering of Polymer Powder,” ASME J. Heat Transfer, 119, pp. 824–831.
Zhang,  Y., and Faghri,  A., 2000, “Thermal Modeling of Selective Area Laser Deposition of Titanium Nitride on a Finite Slab with Stationary and Moving Laser Beams,” Int. J. Heat Mass Transfer, 43(20), pp. 3835–3846.
Zhang,  Y., and Faghri,  A., Buckley,  C. W., and Bergman,  T. L., 2000, “Three-Dimensional Sintering of Two-Component Metal Powders with Stationary and Moving Laser Beams,” ASME J. Heat Transfer, 122(1), pp. 150–158.
Zhang,  Y., and Faghri,  A., 1999, “Melting of a Subcooled Mixed Powder Bed with Constant Heat Flux Heating,” Int. J. Heat Mass Transfer, 42(5), pp. 775–788.
Chin,  R. K., Beuth,  J. L., and Amon,  C. H., 1996, “Thermomechanical Modeling of Molten Metal Droplet Solidification Applied to Layered Manufacturing,” Mech. Mater., 24, pp. 257–271.
Amon,  C. H., Beuth,  J. L., Merz,  R., Prinz,  F. B., and Weiss,  L. E., 1998, “Shape Deposition Manufacturing with Microcasting: Processing, Thermal and Mechanical Issues,” J. Manuf. Sci. Eng., 120(3), pp. 656–665.
Chin,  R. K., Beuth,  J. L., and Amon,  C. H., 2001, “Successive Deposition of Metals in Solid Freeform Fabrication Processes Part 1: Thermomechanical Models of Layers and Droplet Columns,” J. Manuf. Sci. Eng., 123(4), pp. 623–631.
Chin,  R. K., Beuth,  J. L., and Amon,  C. H., 2001, “Successive Deposition of Metals in Solid Freeform Fabrication Processes Part 2: Thermomechanical Models of Adjacent Droplets,” J. Manuf. Sci. Eng., 123(4), pp. 632–638.
Ong, R., Beuth, J. L., and Weiss, L. E., 2000, “Residual Stress Control Issues for Thermal Deposition of Polymers in SFF Processes,” in the Proceedings of the 11th Annual SFF Symposium, D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds., The University of Texas at Austin, pp. 209–218.
Vasinonta,  A., Beuth,  J. L., and Griffith,  M. L., 2001, “A Process Map for Consistent Build Conditions in the Solid Freeform Fabrication of Thin-Walled Structures,” J. Manuf. Sci. Eng., 123(4), pp. 615–622.
Vasinonta, A., Beuth, J. L., and Ong, R., 2001, “Melt Pool Size Control in Thin-Walled and Bulky Parts via Process Maps,” in the Proceedings of the 12th Annual SFF Symposium, D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds., The University of Texas at Austin, pp. 432–440.
Nickel,  A. H., Barnett,  D. M., and Prinz,  F. B., 2001, “Thermal Stresses and Deposition Patterns in Layered Manufacturing,” Mater. Sci. Eng., A, 317, pp. 59–64.
Shiomi, M., Matsumoto, M., Osakada, K., Abe, F., 2001, “Two-Dimensional Finite Element Simulation of Laser Rapid Prototyping, Simulation of Materials Processing: Theory, Methods and Applications,” in Proc. NUMIFORM 2001, K. Mori, ed., Toyohashi, Japan, A. A. Balkema Publishers, pp. 1059–1064.
Matsumoto,  M., Shiomi,  M., Osakada,  K., and Abe,  F., 2002, “Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing,” Int. J. Mach. Tools Manuf., 42, pp. 61–67.
Niebling, F., and Otto, A., 2001, “FE-Simulation of the Selective Laser Sintering Process of Metallic Powders,” in the Proceedings of 3rd International Conference on Laser Assisted Net Shaping LANE 2001, M. Geiger and A. Otto, eds., Meisenbach Verlag, Germany, August 2001, pp. 371–382.
Dai,  K., and Shaw,  L., 2001, “Thermal and Stress Modeling of Multi-Material Laser Processing,” Acta Mater., 49, pp. 4171–4181.
Dai,  K., and Shaw,  L., 2003, “The Size Effect on Stresses and Distortion of Laser Processed Multi-Material Components,” Metall. Mater. Trans. A, 34A, pp. 1133–1145.
Dai,  K., and Shaw,  L., 2002, “Distortion Minimization of Laser-Processed Components through Control of Laser Scanning Patterns,” Rapid Prototyping J., 8(5), pp. 270–276.
Dai, K., and Shaw, L., 2003, “Finite Element Modeling for Laser-Assisted Dental Restoration Process,” in Proc. of the 2003 NSF Design, Service and Manufacturing Grantees and Research Conference, R. G. Reddy, eds., Birmingham, AL, pp. 2292–2300.
Dai,  K., Crocker,  J., Shaw,  L., and Marcus,  H., 2003, “Modeling of Selective Area Laser Deposition (SALD) and SALD Vapor Infiltration of Silicon Carbide,” Rapid Prototyping J., 9(4), pp. 231–239.
Dai,  K., and Shaw,  L., 2004, “Thermal and Mechanical Finite Element Modeling of Laser Forming from Metal and Ceramic Powders,” Acta Mater., 52(1), pp. 69–80.
Dai, K., and Shaw, L., 2002, “Preheating Effects on Multiple Materials Laser Densification,” in the Proceedings of the 13th Annual SFF Symposium, D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow, eds., The University of Texas at Austin, pp. 392–399.
Dai, K., and Shaw, L., 2002, “Finite Element Analysis of Distortion Minimization in Layer-by-Layer Laser-Processed Components,” in Rapid Prototyping of Materials, F. D. S. Marquis, and D. L. Bourell, eds., TMS (the Minerals, Metals & Materials Society), Warrendale, PA, pp. 29–39.
Mackert,  J. R., Butts,  M. B., Morena,  R., and Fairhurst,  C. W., 1986, “Phase Changes in a Leucite-Containing Dental Porcelain Frit,” J. Am. Ceram. Soc., 69(4), pp. C-69–C-72.
Touloukian, Y. S., and DeWitt, D. P., 1972, Thermophysical Properties of Matter, Volume 8, THERMAL RADIATIVE PROPERTIES: Nonmetallic Solids, IFI/Plenum, New York, NY.
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, Thermophysical Properties of Matter, Volume 2, THERMAL CONDUCTIVITY: Nonmetallic Solids, IFI/Plenum, New York, NY.
Touloukian, Y. S., and Buyco, E. H., 1970, Thermophysical Properties of Matter, Volume 5, SPECIFIC HEAT: Nonmetallic Solids, IFI/Plenum, New York, NY.
Schneider, S. J., 1991, Engineered Materials Handbook, Volume 4: Ceramics and Glasses, ASM International, Metals Park, OH.
ANSYS Inc., 2002, ANSYS On-Line Reference Manuals: The ANSYS Elements Reference, Release 6.1, ANSYS Inc., Canonsburg, PA.
Sih, S. S., and Barlow, J. W., 1995, “The Prediction of the Thermal Conductivity of Powders,” in the Proceedings of the 6th Annual SFF Symposium, H. Marcus, J. Beaman, D. Bourell, J. Barlow, and R. Crawford, eds., The University of Texas at Austin, pp. 397–401.
Sih, S. S., and Barlow, J. W., 1994, “Measurement and Prediction of the Thermal Conductivity of Powders at High Temperature,” in the Proceedings of the 5th Annual SFF Symposium H. Marcus, J. Beaman, J. Barlow, D. Bourell, and R. Crawford, eds., The University of Texas at Austin, pp. 321–329.
Poirier, D. R., and Geiger, G. H., 1994, Transport Phenomena in Materials Processing, The Minerals, Metals and Materials Society, Warrendale, PA.
Sih, S. S., and Barlow, J. W., 1995, “Emissivity of Powder Beds,” in the Proceedings of the 6th Annual SFF Symposium, H. Marcus, J. Beaman, D. Bourell, J. Barlow, and R. Crawford, eds., The University of Texas at Austin, pp. 402–408.
E. U. Schlunder, (ed.), 1983, Heat Exchanger Design Handbook, Hemisphere Publishing Corporation, New York, NY.
Mazumder, J., and Kar, A., 1995, Theory and Application of Laser Chemical Vapor Deposition, Plenum Publishing Co., New York, NY.
http://140.114.58.65/heat%20transfer/pdf/HTchap12.pdf
The Pyrometer Instrument Co., Inc., 1996, Pyrofiber Models 865 & 1550—Operation Manual, Revision: 8.0, Northvale, NJ.
Li, X.-X., and Shaw, L., 2004, “Microstructure of Dental Porcelains in a Laser-Assisted Rapid Prototyping Process,” Dental Mater., in press.
Sanders,  D. J., 1984, “Temperature Distributions Produced by Scanning Gaussian Laser Beams,” Appl. Opt., 23(1), pp. 30–36.
Modest,  M. F., and Abakians,  H., 1986, “Evaporative Cutting of a Semi-Infinite Body with a Moving CW Laser,” ASME J. Heat Transfer, 108, pp. 602–607.
Roy,  S., and Modest,  M. F., 1993, “CW Laser Machining of Hard Ceramics; Effects of Three-Dimensional Conduction, Variable Properties and Various Laser Parameters,” Int. J. Heat Mass Transfer, 36(14), pp. 3515–3528.

Figures

Grahic Jump Location
Finite element model developed to simulate the temperature field during laser densification of the dental porcelain body
Grahic Jump Location
Comparison between the experimental and simulated values of the pyrometer temperature as a function of the location of the scanning laser beam with a nominal surface temperature of 1373 K and substrate preheating to 673 K (Case I)
Grahic Jump Location
Comparison between the experimental and simulated incident laser power as a function of the location of the scanning laser beam with a nominal surface temperature of 1273 K and αa=0.41 (Case II)
Grahic Jump Location
(a) The simulated temperature distribution in the powder bed at the cross section of X=6.75 mm when the laser beam scans to this location with a nominal surface temperature of 1373 K and substrate preheating to 673 K (Case I), and (b) the simulated temperature distribution on the surface of the porcelain body at the cross section of X=6.75 mm and the matched Gaussian function
Grahic Jump Location
The temperature distribution and microstructure measured experimentally at the cross section of a porcelain body perpendicular to the laser scan direction during laser densification with a nominal surface temperature of 1373 K and substrate preheating to 673 K (Case I)
Grahic Jump Location
(a) The simulated temperature distribution and (b) the microstructure determined experimentally at the cross section of a porcelain body perpendicular to the laser scan direction during laser densification with a nominal surface temperature of 1273 K (Case II)
Grahic Jump Location
(a) The simulated temperature distribution and (b) the microstructure determined experimentally at the cross section of a porcelain body perpendicular to the laser scan direction during laser densification with a nominal surface temperature of 1173 K (Case III)
Grahic Jump Location
The simulated temperature distribution at the cross section of a porcelain body perpendicular to the laser scan direction during laser densification with a nominal surface temperature of 1223 K (Case IV)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In