0
TECHNICAL NOTES

Importance of Combined Lorentz-Doppler Broadening in High-Temperature Radiative Heat Transfer Applications

[+] Author and Article Information
Anquan Wang, Michael F. Modest

Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802

J. Heat Transfer 126(5), 858-861 (Nov 16, 2004) (4 pages) doi:10.1115/1.1798951 History: Received February 23, 2004; Revised June 24, 2004; Online November 16, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lacis,  A. A., and Oinas,  V., 1991, “A Description of the Correlated-k Distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres,” J. Geophys. Res., 96(D5), pp. 9027–9063.
Goody, R. M., and Yung, Y. L., 1989, Atmospheric Radiation—Theoretical Basis, 2nd ed., Oxford University Press, New York.
Denison,  M. K., and Webb,  B. W., 1993, “A Spectral Line Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers,” ASME J. Heat Transfer, 115, pp. 1004–1012.
Denison,  M. K., and Webb,  B. W., 1995, “The Spectral-Line-Based Weighted-Sum-of-Gray-Gases Model in Nonisothermal Nonhomogeneous Media,” ASME J. Heat Transfer, 117, pp. 359–365.
Rivière,  Ph., Soufiani,  A., Perrin,  M. Y., Riad,  H., and Gleizes,  A., 1996, “Air Mixture Radiative Property Modelling in the Temperature Range 10,000–40,000 K,” J. Quant. Spectrosc. Radiat. Transf., 56, pp. 29–45.
Pierrot,  L., Rivière,  Ph., Soufiani,  A., and Taine,  J., 1999, “A Fictitious-Gas-Based Absorption Distribution Function Global Model for Radiative Transfer in Hot Gases,” J. Quant. Spectrosc. Radiat. Transf., 62, pp. 609–624.
Modest,  M. F., 2003, “Narrow-Band and Full-Spectrum k-Distributions for Radiative Heat Transfer—Correlated-k vs. Scaling Approximation,” J. Quant. Spectrosc. Radiat. Transf., 76(1), pp. 69–83.
Modest,  M. F., and Zhang,  H., 2002, “The Full-Spectrum Correlated-k Distribution for Thermal Radiation From Molecular Gas-Particulate Mixtures,” ASME J. Heat Transfer, 124(1), pp. 30–38.
Zhang,  H., and Modest,  M. F., 2002, “A Multi-Level Full-Spectrum Correlated-k Distribution for Radiative Heat Transfer in Inhomogeneous Gas Mixtures,” J. Quant. Spectrosc. Radiat. Transf., 73(2–5), pp. 349–360.
Zhang,  H., and Modest,  M. F., 2003, “Scalable Multi-Group Full-Spectrum Correlated-k Distributions for Radiative Heat Transfer,” ASME J. Heat Transfer, 125(3), pp. 454–461.
Modest, M. F., 2003, Radiative Heat Transfer, 2nd ed., Academic Press, New York.
Hui,  A. K., Armstrong,  B. H., and Wray,  A. A., 1978, “Rapid Computation of the Voigt and Complex Error Functions,” J. Quant. Spectrosc. Radiat. Transf., 19, p. 509.
Humlı́c̆ek,  J., 1982, “Optimized Computation of the Voigt and Complex Probability Functions,” J. Quant. Spectrosc. Radiat. Transf., 27, p. 437.
Rothman, L. S., Camy-Peyret, C., Flaud, J.-M., Gamache, R. R., Goldman, A., Goorvitch, D., Hawkins, R. L., Schroeder, J., Selby, J. E. A., and Wattson, R. B., 2000, “HITEMP, the High-Temperature Molecular Spectroscopic Database,” available through http://www.hitran.com.
Tashkun, S. A., Perevalov, V. I., Bykov, A. D., Lavrentieva, N. N., and Teffo, J.-L., 2002, “Carbon Dioxide Spectroscopic Databank (CDSD),” available from ftp://ftp.iao.ru/pub/CDSD-1000.
Tashkun,  S. A., Perevalov,  V. I., Teffo,  J.-L., Bykov,  A. D., and Lavrentieva,  N. N., 2003, “CDSD-1000, the High-Temperature Carbon Dioxide Spectroscopic Databank,” J. Quant. Spectrosc. Radiat. Transf., 82(1–4), pp. 165–196.
Modest,  M. F., and Bharadwaj,  S. P., 2002, “High-Resolution, High-Temperature Transmissivity Measurements and Correlations for Carbon Dioxide-Nitrogen Mixtures,” J. Quant. Spectrosc. Radiat. Transf., 73(2–5), pp. 329–338.
Wang, A., and Modest, M. F., 2004, “High-Accuracy, Compact Database of Narrow-Band k-Distributions for Water Vapor and Carbon Dioxide,” Proceedings of the ICHMT 4th International Symposium on Radiative Transfer, Mengüç, M. P. and Sclçuk, N., eds., Begell House Inc., New York.

Figures

Grahic Jump Location
Narrow-band transmissivity; total pressure p=1.0 bar, temperature T=2500 K and mole fraction x=1.0; errors evaluated according to Eq. (5): (a) water vapor, and (b) carbon dioxide
Grahic Jump Location
Narrow-band transmissivity; total pressure p=0.1 bar, temperature T=1500 K and mole fraction x=1.0; errors evaluated according to Eq. (5): (a) water vapor, and (b) carbon dioxide

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In