0
RESEARCH PAPER

Application of the Conservation Element and Solution Element Method in Numerical Modeling of Three-Dimensional Heat Conduction With Melting and/or Freezing

[+] Author and Article Information
Anahita Ayasoufi, Theo G. Keith, Ramin K. Rahmani

Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH

J. Heat Transfer 126(6), 937-945 (Jan 26, 2005) (9 pages) doi:10.1115/1.1795235 History: Received August 08, 2003; Revised June 18, 2004; Online January 26, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sulfredge,  C. D., Chow,  L. C., and Tagavi,  K. A., 1992, “Void Formation in Radial Solidification of Cylinders,” ASME J. Sol. Energy Eng., 114, pp. 32–39.
Šarler,  B., 1995, “Stefan’s Work on Solid-Liquid Phase Change,” Eng. Anal. Boundary Elem., 16, pp. 83–92.
Alexiades, V., and Solomon, A. D., 1993, Mathematical Modeling of Melting and Freezing Processes, Hemisphere, Washington, DC.
Rubinsteĭn, L. I., 1971, The Stefan Problem, Translations of Mathematical Monographs, 27, American Mathematical Society, Providence.
Elliott, C. M., and Ockendon, J. R., 1982, Weak and Variational Methods for Moving Boundary Problems, Pitman, New York.
Crank, J., 1984, Free and Moving Boundary Problems, Clarendon Press, Oxford.
Douglas,  J., and Gallie,  T., 1955, “On the Numerical Integration of a Parabolic Differential Equation Subject to a Moving Boundary Condition,” Duke Math. J., 22, pp. 557–571.
Boley,  B. A., 1968, “A General Starting Solution for Melting and Solidifying Slabs,” Int. J. Eng. Sci., 6, 89.
Atthey, D. R., 1975, “A Finite Difference Scheme for Melting Problems Based on the Method of Weak Solutions,” Moving Boundary Problems in Heat Flow and Diffusion, J. R., Ockendon, and W. R., Hodgkins, eds., Clarendon Press, Oxford, p. 182.
Ockendon, J. R., 1975, “Techniques of Analysis,” Moving Boundary Problems in Heat Flow and Diffusion, J. R., Ockendon, and W. R., Hodgkins, eds., Clarendon Press, Oxford, p. 138.
Voller,  V., and Cross,  M., 1981, “Accurate Solutions of Moving Boundary Problems Using the Enthalpy Method,” Int. J. Heat Mass Transfer, 24, pp. 545–556.
Celentano,  D., and Pérez,  E., 1996, “A Phase-Change Temperature-Based Formulation Including General Latent Heat Effects,” Int. J. Numer. Methods Heat Fluid Flow, 6(8), pp. 71–79.
Chang, S. C., and To, W. M., 1991, “A New Numerical Framework for Solving Conservation Laws—The Method of Space-Time Conservation Element and Solution Element,” NASA TM 104495.
Chang,  S. C., Wang,  X. Y., and Chow,  C. Y., 1999, “The Space-Time Conservation Element and Solution Element Method: A New High Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws,” J. Comput. Phys., 156, pp. 89–136.
Chang,  S. C., Wang,  X. Y., and To,  W. M., 2000, “Application of the Space-Time Conservation Element and Solution Element Method to One-Dimensional Convection-Diffusion Problems,” J. Comput. Phys., 165, pp. 189–215.
Wang, X. Y., Chow, C. Y., and Chang, S. C., 1998, “The Space-Time Conservation Element and Solution Element Method—A New High-Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws II, Numerical Simulation of Shock Waves and Contact Discontinuities,” NASA/TM-1998-208844.
Loh,  C. Y., Hultgren,  L. S., and Chang,  S. C., 2001, “Wave Computation in Incompressible Flow Using the Space-Time Conservation Element and Solution Element Method,” AIAA J., 39(5), pp. 794–801.
Loh,  C. Y., and Zaman,  K. B. M. Q., 2002, “Numerical Investigation of ‘Transonic Resonance’ With a Convergent-Divergent Nozzle,” AIAA J., 40(12), pp. 2393–2401.
Wang, X. Y., Chang, S. C., and Jorgenson, P. C. E., 2000, “Prediction of Sound Waves Propagating Through a Nozzle Without/With a Shock Wave Using the Space-Time CE/SE Method,” AIAA Paper 2000-0222, presented at 38th AIAA Aerospace Sciences Meeting, Reno.
Guo, Y., Hsu, A. T., Wu, J., Yang, Z., and Oyedrian, A., 2000, “Extension of CE/SE Method to 2D Viscous Flows,” 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 17–19, 2000.
Chen, K. H., and Liu, N. S., 2000, “Navier-Stokes Solution of the FLUX Code: A Module for the NCC Solver Using the Concept of Space-Time Conservation Element and Solution Element,” AIAA 2000-0455.
Molls,  T., and Molls,  F., 1998, “Space-Time Conservation Method Applied to Saint Venant Equations,” J. Hydraul. Eng., 125(5), pp. 501–508.
Yang,  D., Yu,  S. T., and Zhao,  J., 2001, “Convergence and Error Bound Analysis for the Space-Time CESE Method,” Numer. Methods Partial Differ. Equ., 17, pp. 64–78.
Liu, N. S., and Chen, K. H., 1999, “FLUX: An Alternative Flow Solver for the National Combustion Code,” AIAA Paper, 99–1079.
Chang,  S. C., 1995, “The Method of Space-Time Conservation Element and Solution Element—A New Approach for Solving the Navier-Stokes and Euler Equations,” J. Comput. Phys., 119, pp. 295–324.
Chang, S. C., Yu, S. T., Himansu, A., Wang, X. Y., Chow, C. Y., and Loh, C. Y., 1996, The Method of Space-Time Conservation Element and Solution Element—A New Paradigm for Numerical Solution of Conservation Laws, Computational Fluid Dynamics Review, UK.
Cockburn, B., 1999, “Discontinuous Galerkin Methods for Convection Dominate Problems,” High-Order Methods for Computational Physics, T. J., Barth, and H., Deconinck, eds., Springer, Berlin, pp. 69–224.
Babuška,  I., Baumann,  C. E., and Oden,  J. T., 1999, “A Discontinuous hp Finite Element Method for Diffusion Problems: 1-D Analysis,” Comput. Math. Appl., 37, pp. 103–122.
Engel,  G., Garikipati,  K., Hughes,  T. J. R., Larson,  M. G., Mazzei,  L., and Taylor,  R. L., 2002, “Continuous/Discontinuous Finite Element Approximations of Fourth-Order Elliptic Problems in Structural and Continuum Mechanics With Applications to Thin Beams and Plates, and Strain Gradient Elasticity,” Comput. Methods Appl. Mech. Eng., 191, pp. 3669–3750.
Ayasoufi,  A., and Keith,  T. G., 2003, “Application of the Conservation Element and Solution Element Method in Numerical Modeling of Heat Conduction With Melting and/or Freezing,” Int. J. Numer. Methods Heat Fluid Flow, 13(4), pp. 448–472.
Ayasoufi,  A., and Keith,  T. G., 2004, “Application of the Conservation Element and Solution Element Method in Numerical Modeling of Axisymmetric Heat Conduction With Melting and/or Freezing,” JSME Int. J., Ser. B, 47(1), pp. 115–125.
Wang,  X. Y., and Chang,  S. C., 1999, “A 2D Non-Splitting Unstructured Triangular Mesh Euler Solver Based on the Space Time Conservation Element and Solution Element Method,” Comput. Fluid Dyn. J., 8(2), pp. 309–325.
Zhang,  Z. C., Yu,  S. T., and Chang,  S. C., 2002, “A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes,” J. Comput. Phys., 175, pp. 168–199.
Liu, N. S., and Chen, K. H., 2001, “An Alternative Flow Solver for the NCC—The FLUX Code and Its Algorithm,” 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.
Lunardini, V. J., 1981, Heat Transfer in Cold Climates, Van Nostrand Reinhold, New York.
Voller,  V. R., and Swaminathan,  R., 1991, “General Source-Based Method for Solidification Phase Change,” Numer. Heat Transfer, Part B, 19, pp. 175–189.

Figures

Grahic Jump Location
Computational molecule of CE/SE method, a) CEs and b) SEs
Grahic Jump Location
Geometry for 3D formulation
Grahic Jump Location
Vanishing errors for Case 1
Grahic Jump Location
Grid size effects for Case 2
Grahic Jump Location
Demonstration of the CE/SE scheme’s second-order accuracy
Grahic Jump Location
Spatial grid for the unit cube
Grahic Jump Location
Location of the phase change interface for Case 3
Grahic Jump Location
Temperature distribution at t=0.14 s for Case 3
Grahic Jump Location
Comparison of the errors at t=0.14 s for Case 3
Grahic Jump Location
The thawing cube, (Case 4), at t=0.005, 0.02, and 0.05 s
Grahic Jump Location
(a) Thawing ellipsoid, (Case 5), at t=0, 0.0035, and 0.0085 s, (b) Thawing sphere, (Case 6), at t=0, 0.0025, and 0.0065 s
Grahic Jump Location
Total melting time for the thawing sphere of Case 6

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In