0
RESEARCH PAPER

Simulation of Pendant Droplets and Falling Films in Horizontal Tube Absorbers

[+] Author and Article Information
Jesse D. Killion, Srinivas Garimella

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

J. Heat Transfer 126(6), 1003-1013 (Jan 26, 2005) (11 pages) doi:10.1115/1.1833364 History: Received October 31, 2003; Revised June 08, 2004; Online January 26, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

ASHRAE, 1997, 1997 ASHRAE Handbook—Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
Nomura, T., Nishimura, N., Wei, S., Yamaguchi, S., and Kawakami, R., 1993, “Heat and Mass Transfer Mechanism in the Absorber of Water/LiBr Conventional Absorption Refrigerator: Experimental Examination by Visualized Model,” International Absorption Heat Pump Conference, New Orleans, Louisiana, Vol. AES-31, The Advanced Energy Systems Division, ASME, pp. 203–208.
Kirby,  M. J., and Perez-Blanco,  H., 1994, “A Design Model for Horizontal Tube Water/Lithium Bromide Absorbers,” , ASME Heat Pump and Refrigeration Systems Design, Analysis and Applications, Conference proceedings, 32 , ASME New York, pp. 1–10.
Jeong,  S., and Garimella,  S., 2002, “Falling-Film and Droplet Mode Heat and Mass Transfer in a Horizontal Tube LiBr/Water Absorber,” Int. J. Heat Mass Transfer, 45(7), pp. 1445–1458.
Killion,  J. D., and Garimella,  S., 2003, “Gravity-Driven Flow of Liquid Films and Droplets in Horizontal Tube Banks,” Int. J. Refrig., 26(5), pp. 516–526.
Atchley, J. A., Perez-Blanco, H., Kirby, M. J., and Miller, W. A., 1998, “An Experimental and Analytical Study of Advanced Surfaces for Absorption Chiller Absorbers,” Gas Research Institute Report GRI.
Andberg, J. W., and Vliet, G. C., 1987, “Absorption of Vapors Into Liquid Films Flowing Over Cooled Horizontal Tubes,” Second ASME-JSME Thermal Engineering Joint Conference, Honolulu, Hawaii, Vol. 2, pp. 533–541.
Choudhury, S. K., Nishiguchi, A., Hisajima, D., Fukushima, T., Ohuchi, T., and Sakaguchi, S., 1993, “Absorption of Vapors Into Liquid Films Flowing Over Cooled Horizontal Tubes,” Proceedings of the 1993 Annual Meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 27–30 June, 1993, Denver, CO ASHRAE, Atlanta, Vol. 99, pp. 81–89.
Conlisk,  A. T., and Mao,  J., 1996, “Nonisothermal Absorption on a Horizontal Cylindrical Tube–1. The Film Flow,” Chem. Eng. Sci., 51(8), pp. 1275–1285.
Lu, Z., Li, D., Li, S., and Yu-Chi, B., 1996, “A Semi-Empirical Model of the Falling Film Absorption Outside Horizontal Tubes,” International Ab-Sorption Heat Pump Conference, Vol. 2, pp. 473–480.
Killion,  J. D., and Garimella,  S., 2001, “A Critical Review of Models of Coupled Heat and Mass Transfer in Falling-Film Absorption,” Int. J. Refrig., 24(8), pp. 755–797.
Killion,  J. D., and Garimella,  S., 2003, “Pendant Droplet Dynamics for Absorption on Horizontal Tube Banks,” Int. J. Heat Mass Transfer, (submitted).
Tang, J., Lu, Z., Yu-chi, B., and Lin, S., 1991, “Droplet Spacing of Falling Film Flow on Horizontal Tube Bundles,” Proceedings of the XVIIIth International Congress of Refrigeration, Montreal, Vol. II, pp. 474–478.
Limat,  L., Jenffer,  P., Dagens,  B., Touron,  E., Fermigier,  M., and Wesfreid,  J. E., 1992, “Gravitational Instabilities of Thin Liquid Layers. Dynamics of Pattern Selection,” Physica D, 61(1–4), p. 166.
Giorgiutti,  F., Bleton,  A., Limat,  L., and Wesfreid,  J. E., 1995, “Dynamics of a One-Dimensional Array of Liquid Columns,” Phys. Rev. Lett., 74(4), p. 538.
de Bruyn,  J. R., 1997, “Crossover Between Surface Tension and Gravity-Driven Instabilities of a Thin Fluid Layer on a Horizontal Cylinder,” Phys. Fluids, 9(6), p. 1599.
Hu,  X., and Jacobi,  A. M., 1996, “The Intertube Falling Film: Part 1—Flow Characteristics, Mode Transitions, and Hysteresis,” J. Heat Transfer, 118(3), pp. 616–625.
Hu,  X., and Jacobi,  A. M., 1998, “Departure-Site Spacing for Liquid Droplets and Jets Falling Between Horizontal Circular Tubes,” Exp. Therm. Fluid Sci., 16(4), pp. 322–331.
Hu,  X., and Jacobi,  A. M., 1996, “The Intertube Falling Film: Part 2—Mode Effects on Sensible Heat Transfer to a Falling Liquid Film,” J. Heat Transfer, 118(3), pp. 626–633.
Cavallini, A., Doretti, L., Fornasieri, E., and Zilio, C., 2001, “Heat and Mass Transfer and Flow Patterns During Absorption of Steam in LiBr+Water Falling Film,” IIF-IIR-Commission B1, Paderborn, Germany.
Roques,  J. F., Dupont,  V., and Thome,  J. R., 2002, “Falling Film Transitions on Plain and Enhanced Tubes,” J. Heat Transfer, 124(3), pp. 491–499.
Roques,  J.-F., and Thome,  J. R., 2003, “Falling Film Transitions Between Droplet, Column, and Sheet Flow Modes on a Vertical Array of Horizontal 19 FPI and 40 FPI Low-Finned Tubes,” Curr. Opin. Pediatr., 24(6), pp. 40–45.
Eggers,  J., 1997, “Nonlinear Dynamics and Breakup of Free-Surface Flows,” Rev. Mod. Phys., 69(3), pp. 865–929.
Mariotte, E., 1686, Traite’ Du Mouvement Des Eaux Et Des Autres Corps Fluids, E. Michallet, Paris.
Savart,  F., 1833, Ann. Chim. (Paris), 53, p. 337 (with additional plates in Vol. 54).
Plateau,  J. P., 1849, “Recherches Expérimentales Et Théorique Sur Les Figures D’équilibre D’une Masse Liquide Sans Pesanteur,” Mémoires de l’Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 23, pp. 1–55.
Rayleigh,  L., and Rayleigh,  J. W. S., 1879, Proc. London Math. Soc., 10, p. 4.
Rayleigh,  L., and Rayleigh,  J. W. S., 1879, Proc. R. Soc. London, Ser. A, 29, p. 94.
Worthington, A. M., 1908, A Study of Splashes, Longmans Green and Co., London, pp. xii, 129, 11.
Kumar,  R., and Kuloor,  N. R., 1970, “The Formation of Bubbles and Drops,” Adv. Chem. Eng., 8, pp. 255–368.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops, and Particles, Academic Press, New York, p. 380.
Frohn, A., and Roth, N., 2000, Dynamics of Droplets, in Experimental Fluid Mechanics, Springer, New York, p. 292.
Scheele,  G. F., and Meister,  B. J., 1968, “Drop Formation at Low Velocities in Liquid-Liquid Systems: Part 1. Prediction of Drop Volume,” AIChE J., 14(1), pp. 9–19.
Heertjes,  P. M., de Nie,  L. H., and de Vries,  H. J., 1971, “Drop Formation in Liquid-Liquid Systems-I Prediction of Drop Volumes at Moderate Speed of Formation,” Chem. Eng. Sci., 26, pp. 441–449.
Middleman, S., 1995, Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, Academic Press, San Diego, p. 299.
Bogy,  D. B., 1979, “Drop Formation in a Circular Liquid Jet,” Annu. Rev. Fluid Mech., 11, pp. 207–228.
Yarin, A. L., 1993, Free Liquid Jets and Films: Hydrodynamics and Rheology, Longman, Scientific & Technical, New York.
Worthington,  A. M., 1881, “On Pendent Drops,” Proc. R. Soc. London, 32, pp. 362–377.
Pitts,  E., 1974, “The Stability of Pendant Liquid Drops. Part 2. Axial Symmetry,” J. Fluid Mech., 63, pp. 487–508.
Peregrine,  D. H., Shoker,  G., and Symon,  A., 1990, “The Bifurcation of Liquid Bridges,” J. Fluid Mech., 212, pp. 25–39.
Rein,  M., 1993, “Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces,” Fluid Dyn. Res., 12(2), pp. 61–93.
Tropea,  C., and Marengo,  M., 1999, “Impact of Drops on Walls and Films,” Multiphase Sci. Technol., 11(1), pp. 19–36.
Prosperetti,  A., and Oguz,  H. N., 1993, “Impact of Drops on Liquid Surfaces and the Underwater Noise of Rain,” Annu. Rev. Fluid Mech., 25, p. 577.
Mundo,  C., Sommerfeld,  M., and Tropea,  C., 1995, “Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process,” Int. J. Multiphase Flow, 21(2), pp. 151–173.
Killion, J. D., 2003, Masters Thesis: An Investigation of Droplets and Films Falling over Horizontal Tubes, in Department of Mechanical Engineering, Iowa State University, Ames, Iowa, p. 156.
Hyman,  J. M., 1983, “Numerical Methods for Tracking Interfaces,” Physica D, 12D(1–3), pp. 396–407; Fronts, Interfaces and Patterns, Proc of the 3rd Annu Int Conf of the Cent for Nonlinear Stud, 2–6 May, 1983.
Sussman,  M., Fatemi,  E., Smereka,  P., and Osher,  S., 1998, “Improved Level Set Method for Incompressible Two-Phase Flows,” Comput. Fluids, 27(5–6), pp. 663–680.
Sussman,  M., Smereka,  P., and Osher,  S., 1994, “A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow,” J. Comput. Phys., 114(1), pp. 146–159.
Unverdi,  S. O., and Tryggvason,  G., 1992, “A Front Tracking Method for Viscousm Incompressible Multi-Fluid Flows,” J. Comput. Phys., 100, p. 25.
Unverdi, S. O., and Tryggvason, G., 1992, “Computations of Multi-Fluid Flows,” Physica D: Nonlinear Phenomena Proceedings of the 11th Annual International Conference of the Center for Nonlinear Studies, 20–24 May, 1991, 60 (1–4): p. 70.
Boulton-Stone,  J. M., 1993, “Comparison of Boundary Integral Methods for Studying the Motion of a Two-Dimensional Bubble in an Infinite Fluid,” Comput. Methods Appl. Mech. Eng., 102(2), pp. 213–234.
Blake, J. R., Boulton-Stone, J. M., and Tong, R. P., 1995, Boundary Integral Methods for Rising, Bursting and Collapsing Bubbles, in Boundary Element Applications in Fluid Mechanics, H. Power, ed., Computational Mechanics Publications, WIT Press, Boston, MA, pp. 31/376.
Kelecy,  F. J., and Pletcher,  R. H., 1997, “The Development of a Free Surface Capturing Approach for Multidimensional Free Surface Flows in Closed Containers,” J. Comput. Phys., 138(2), p. 939.
Wilkes,  E. D., Phillips,  S. D., and Basaran,  O. A., 1999, “Computational and Experimental Analysis of Drop Formation,” Phys. Fluids, 11(12), pp. 3577–3860.
Notz,  P. K., Chen,  A. U., and Basaran,  O. A., 2001, “Satellite Drops: Unexpected Dynamics and Change of Scaling During Pinch-Off,” Phys. Fluids, 13(3), pp. 549–552.
Schulkes,  R. M. S. M., 1994, “The Evolution and Bifurcation of a Pendant Drop,” J. Fluid Mech., 278, pp. 83–100.
Zhang,  D. F., and Stone,  H. A., 1997, “Drop Formation in Viscous Flows at a Vertical Capillary Tube,” Phys. Fluids, 9(8), pp. 2234–2242.
Oguz,  H. N., and Prosperetti,  A., 1993, “Dynamics of Bubble Growth and Detachment From a Needle,” J. Fluid Mech., 257, pp. 111–145.
Eggers,  J., and Dupont,  T. F., 1994, “Drop Formation in a One-Dimensional Approximation for the Navier-Stokes Equation,” J. Fluid Mech., 262, pp. 205–221.
Papageorgiou,  D. T., 1995, “On the Breakup of Viscous Liquid Threads,” Phys. Fluids, 7(7), p. 1529.
Shi,  X. D., Brenner,  M. P., and Nagel,  S. R., 1994, “Cascade of Structure in a Drop Falling From a Faucet,” Science, 265(5169), p. 219.
Eggers,  J., 1993, “Universal Pinching of 3D Axisymmetric Free-Surface Flow,” Phys. Rev. Lett., 71, p. 3458.
Eggers,  J., 1995, “Theory of Drop Formation,” Phys. Fluids, 7(5), p. 941.
Brenner,  M. P., Eggers,  J., Joseph,  K., Nagel,  S. R., and Shi,  X. D., 1997, “Breakdown of Scaling in Droplet Fission at High Reynolds Number,” Phys. Fluids, 9(6), p. 1573.
Rider,  W. J., and Kothe,  D. B., 1998, “Reconstructing Volume Tracking,” J. Comput. Phys., 141(2), p. 112.
Kothe,  D. B., and Mjolsness,  R. C., 1992, “Ripple: A New Model for Incompressible Flows With Free Surfaces,” AIAA J., 30(11), pp. 2694–2700.
Brackbill,  J. U., Kothe,  D. B., and Zemach,  C., 1992, “A Continuum Method for Modeling Surface Tension,” J. Comput. Phys., 100(2), pp. 335–354.
Brackbill, J. U., and Kothe, D. B., 1996, “Dynamical Modeling of Surface Tension,” Proceedings of the 1996 3rd Microgravity Fluid Physics Conference, 13–15 July, 1996, Cleveland, OH, NASA, pp. 693–698.
Kelkar, K. M., and Patankar, S. V., 1994, “Numerical Method for the Prediction of Two-Fluid Flows in Domains With Moving Boundaries,” Proceedings of the 1994 ASME Fluids Engineering Division Summer Meeting. Part 7 (of 18), 19–23 June, 1994, Lake Tahoe, NV, Vol. 185, ASME, pp. 169–176.
Gueyffier,  D., Li,  J., Nadim,  A., Scardovelli,  R., and Zaleski,  S., 1999, “Volume-of-Fluid Interface Tracking With Smoothed Surface Stress Methods for Three-Dimensional Flows,” J. Comput. Phys., 152(2), pp. 423–456.
Harvie,  D. J. E., and Fletcher,  D. F., 2001, “A New Volume of Fluid Advection Algorithm: The Defined Donating Region Scheme,” Int. J. Numer. Methods Fluids, 35(2), pp. 151–172.
Rudman,  M., 1997, “Volume-Tracking Methods for Interfacial Flow Calculations,” Int. J. Numer. Methods Fluids, 24(7), pp. 671–691.
Rudman,  M., 1998, “Volume-Tracking Method for Incompressible Multifluid Flows With Large Density Variations,” Int. J. Numer. Methods Fluids, 28(2), pp. 357–378.
Zhang,  X., 1999, “Dynamics of Growth and Breakup of Viscous Pendant Drops Into Air,” J. Colloid Interface Sci., 212(1), pp. 107–122.
Richards,  J. R., Beris,  A. N., and Lenhoff,  A. M., 1995, “Drop Formation in Liquid-Liquid Systems Before and After Jetting,” Phys. Fluids, 7(11), pp. 2617–2630.
Richards, J. R., 1994, Doctoral Thesis: Fluid Mechanics of Liquid-Liquid Systems, in Chemical Engineering, University of Delaware, p. 241.
Rieber,  M., and Frohn,  A., 1999, “Numerical Study on the Mechanism of Splashing,” Int. J. Heat Fluid Flow, 20(5), pp. 455–461.
Gueyffier, D., 2000, Doctoral Dissertation: Etude De L’impact De Gouttes Sur Un Film Liquide Mince. Développement De La Corrolle Et Formation De Projections (in French), in Mécanique, Université Pierre et Marie Curie, Paris 6, p. 177.
Zhang,  X., 1999, “Dynamics of Drop Formation in Viscous Flows,” Chem. Eng. Sci., 54, pp. 1759–1774.
Chen,  L., Garimella,  S. V., Reizes,  J. A., and Leonardi,  E., 1997, “Motion of Interacting Gas Bubbles in a Viscous Liquid Including Wall Effects and Evaporation,” Numer. Heat Transfer, Part A, 31(6), pp. 629–654.
Yoshikawa, T., Murai, Y., and Yamamoto, F., 1997, “Numerical and Experimental Investigations of Bursting Bubble on Free Surface,” Proceedings of the 1997 ASME Fluids Engineering Division Summer Meeting, FEDSM’97. Part 13 (of 24), 22–26 June, 1997, Vancouver, Can, Vol. 13, ASME, New York, NY, p. 6.
Suzuki, T., Mitachi, K., and Fukuda, A., 1998, “Numerical Analysis of Free Surface Motion Ensuing Burst of Bubble Dome,” Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference, 26–30 July, 1998, San Diego, CA, Vol. 377, ASME, Fairfield, NJ, pp. 235–241.
Fluent Inc., 2003, Fluent, Lebanon, NH.
Keenan, J. H., Chao, J., and Kaye, J., 1983, Gas Tables International Version Thermodynamic Properties of Air Products of Combustion and Component Gases Compressible Flow Functions, Including Those of Ascher H. Shapiro and Gilbert M. Edelman, Wiley, New York, pp. xvi, 211.
Lee,  R. J., DiGuilio,  R. M., Jeter,  S. M., and Teja,  A. S., 1990, “Properties of Lithium Bromide-Water Solutions at High Temperatures and Concentrations—Part II: Density and Viscosity,” ASHRAE Trans., 86, pp. 220–226.
Klein, S. A., and Alvarado, F. L., 2000, EES-Engineering Equation Solver, F-Chart Software, www.fchart.com.
Haar, L., Gallagher, J. S., Kell, G. S., and National Standard Reference Data System (U.S.), 1984, Nbs/Nrc Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units, Hemisphere Washington, D.C., pp. xii, 320.
Kulankara,  S., and Herold,  K. E., 2002, “Surface Tension of Aqueous Lithium Bromide With Heat/Mass Transfer Enhancement Additives: The Effect of Additive Vapor Transport,” Int. J. Refrig., 25(3), pp. 383–389.
Aris, R., 1962, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall International Series in the Physical and Chemical Engineering Sciences, Dover 1989 (Prentice-Hall), Englewood Cliffs, N.J., p. 286.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, New York.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 2002, Transport Phenomena, Wiley, New York, pp. xii, 895.
Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., 1997, Computational Fluid Mechanics and Heat Transfer, Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Taylor & Francis, Washington, D.C., p. 792.
Issa,  R. I., 1986, “Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting,” J. Comput. Phys., 62(1), pp. 40–65.
Youngs, D. L., 1982, “Time-Dependent Multi-Material Flow With Large Fluid Distortion,” in Numerical Methods for Fluid Dynamics, K. W. Morton and M. J. Baines, eds., Academic Press, New York.

Figures

Grahic Jump Location
Photograph of droplet formation in a falling film of aqueous LiBr over 15.9 mm outer diameter horizontal tubes 12 (box illustrates typical domain of CFD model)
Grahic Jump Location
Illustration of piecewise linear reconstruction of interface, adapted from Ref. 65 (reproduced with permission from Elsevier). Smooth line shows actual interface (circle), numbers represent volume fractions.
Grahic Jump Location
Domain of droplet and tube model showing boundary and initial conditions (not to scale, film thickness greatly exaggerated)
Grahic Jump Location
Mesh used for three-dimensional model of tubes, shades of gray indicate partitioning for parallel computing
Grahic Jump Location
Results of simulation of falling film on horizontal tubes [(a)–(c) 50 ms between frames, (c)–(d) 20 ms between frames, (d)–(h) 10 ms between frames]
Grahic Jump Location
Visual comparison of experiment (left) with simulation (right) synchronized at impact [frames (a)–(g) 10 ms between frames, frames (g)–(p) 6 ms between frames]
Grahic Jump Location
Comparison of droplet volume and surface area from analysis of video and simulation
Grahic Jump Location
Investigation of grid independence using column-of-spheres model with 0.35 mm initial film thickness
Grahic Jump Location
Comparison of experimental results with axisymmetric “column-of-spheres” models with various liquid inventories

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In