Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures

[+] Author and Article Information
Jae-Mo Koo, Linan Jiang, Kenneth E. Goodson

Mechanical Engineering Department, Stanford University, Stanford, CA 94305

Sungjun Im

Materials Science and Engineering Department, Stanford University, Stanford, CA 94305

J. Heat Transfer 127(1), 49-58 (Feb 15, 2005) (10 pages) doi:10.1115/1.1839582 History: Received April 23, 2004; Revised September 11, 2004; Online February 15, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.


Souri, S. J., Banerjee, K., Mehrotra, A., and Saraswat, K. C., 2000, “Multiple Si Layer ICs: Motivation, Performance Analysis, and Design Implications,” Proc. 37th ACM Design Automation Conference, Los Angeles, CA, pp. 213–220.
Banerjee,  K., Souri,  S. J., Kapur,  P., and Saraswat,  K. C., 2001, “3-D ICs: A Novel Chip Design for Improving Deep-Submicron Interconnect Performance and Systems-on-Chip Integration,” Proc. IEEE, 89(5), pp. 602–633.
DARPA MTO CFP, Section 1: BAA 03-25 3D Integrated Circuits Proposer Information (http://www.darpa.mil/mto/solicitations/BAA03-25/S/Section1.html).
Kleiner, M. B., Kuhn, S. A., Ramm, P., and Weber, W., 1995, “Thermal Analysis of Vertically Integrated Circuits,” Tech. Dig.—Int. Electron Devices Meet., pp. 487–490.
Rahman, A., and Reif, R., 2001, “Thermal Analysis of Three-Dimensional (3-D) Integrated Circuits (ICs),” Proc. IITC, pp. 157–159.
Im, S., and Banerjee, K., 2000, “Full Chip Thermal Analysis of Planar (2-D) and Vertically Integrated (3-D) High Performance ICs,” Tech. Dig.—Int. Electron Devices Meet., pp. 727–730.
Hu,  C., Morgen,  M., Ho,  P. S., Jain,  A., Gill,  W. N., Plawsky,  J. L., and Wayne,  P. C., 2000, “Thermal Conductivity Study of Porous Low-k Dielectric Materials,” Appl. Phys. Lett., 77(1), pp. 145–147.
Leland,  J. E., Ponnappan,  R., and Klasing,  K. S., 2002, “Experimental Investigation of an Air Microjet Array Impingement Cooling Device,” J. Thermophys. Heat Transfer, 16(2), pp. 187–192.
Pal,  A., Joshi,  Y. K., Beitelmal,  M. H., Patel,  C. D., and Wenger,  T. M., 2002, “Design and Performance Evaluation of a Compact Thermosyphon,” IEEE Trans. Compon., Packaging Tech., 25(4), pp. 601–607.
Jiang,  L., Mikkelsen,  J., Koo,  J., Huber,  D., Yao,  S., Zhang,  L., Zhou,  P., Maveety,  J. G., Prasher,  R., Santiago,  J. G., Kenny,  T. W., and Goodson,  K. E., 2002, “Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits,” IEEE Trans. Components Packaging Tech., 25(3), pp. 347–355.
Nguyen,  N. T., Huang,  X. Y., and Chuan,  T. K., 2002, “MEMS-Micropumps: A Review,” J. Fluids Eng., 124(2), pp. 384–392.
Koo, J., Jiang, L., Bari, A., Zhang, L., Wang, E., Kenny, T. W., Santiago, J. G., and Goodson, K. E., 2002, “Convective Boiling in Microchannel Heat Sinks with Spatially-Varying Heat Generation,” Proc. ITherm, San Diego, CA, pp. 341–346.
Zhang,  L., Koo,  J., Jiang,  L., Asheghi,  M., Goodson,  K. E., Santiago,  J. G., and Kenny,  T. W., 2002, “Measurements and Modeling of Two-phase Flow in Microchannels with Nearly-Constant Heat Flux Boundary Conditions,” J. Microelectromech. Syst., 11, pp. 12–19.
Ramm,  P. , 1997, “Three Dimensional Metallization for Vertically Integrated Circuits,” Microelectron. Eng., 37/38, pp. 39–47.
Fan,  A., Rahman,  A., and Reif,  R., 1999, “Copper Wafer Bonding,” Electrochem. Solid-State Lett., 2(10), pp. 534–536.
Lee, K. W., Nakamura, T., Ono, T., Yamada, Y., Mizukusa, T., Hashimoto, H., Park, K. T., Kurino, H., and Koyanagi, M., 2000, “Three-Dimensional Shared Memory Fabricated Using Wafer Stacking Technology,” Tech. Dig.—Int. Electron Devices Meet., pp. 165–168.
Reif, R., Fan, A., Chen, K., and Das, S., 2002, “Fabrication Technologies for Three-Dimensional Integrated Circuits,” Proc. ISQED, pp. 33–37.
Zingg,  R. P., Friedrich,  J. A., Neudeck,  G. W., and Hofflinger,  B., 1990, “Three-Dimensional Stacked MOS Transistors by Locallized Epitaxial Overgrowth,” IEEE Trans. Electron Devices, 37(6), pp. 1452–1461.
Neudeck,  G. W., Pae,  S., Denton,  J. P., and Su,  T., 1999, “Multiple Layers of Silicon-on-Insulator for Nanostructure Devices,” J. Vac. Sci. Technol., 17(3), pp. 994–998.
Pae,  S., Su,  T., Denton,  J. P., and Neudeck,  G. W., 1999, “Multiple Layers of Silicon-on-Insulator Islands Fabrication by Selective Epitaxial Growth,” IEEE Electron Device Lett., 20(5), pp. 194–196.
Kawamura,  S., Sasaki,  N., Iwai,  T., Nakano,  M., and Takagi,  M., 1983, “Three-Dimensional CMOS IC’s Fabricated by Using Beam Recrystallization,” IEEE Electron Device Lett., 4(10), pp. 366–368.
Sugahara,  K., Nishimura,  T., Kusunoki,  S., Akasaka,  Y., and Nakata,  H., 1986, “SOI/SOI/Bulk-Si Triple Level Structure for Three-Dimensional Devices,” IEEE Electron Device Lett., 7(3), pp. 193–195.
Knio, T., Oyama, K., Hayashi, Y., and Morimoto, M., 1989, “Three Dimensional ICs, Having Four Stacked Active Device Layers,” Tech. Dig.—Int. Electron Devices Meet., pp. 837–840.
Kohno,  A., Sameshima,  T., Sano,  N., Sekiya,  M., and Hara,  M., 1995, “High Performance poly-Si TFTs Fabricated Using Pulsed Laser Annealing and Remote Plasma CVD with Low Temperature Processing,” IEEE Trans. Electron Devices, 42(2), pp. 251–257.
Meyerson,  B. S., Ganin,  E., Smith,  D. A., and Nguyen,  T. N., 1986, “Low Temperature Si Epitaxy by Hot Wall Ultrahigh Vacuum/Low Pressure Chemical Vapor Deposition Techniques: Surface Optimization,” J. Electrochem. Soc., 133, pp. 1232–1235.
Donahue,  T. J., and Reif,  R., 1985, “Silicon Epitaxy at 650–800°C using Low-Pressure Chemical Vapor Deposition Both With and Without Plasma Enhancement,” J. Appl. Phys., 57, pp. 2757–2765.
Subramanian,  V., and Saraswat,  K. C., 1998, “High-Performance Germanium-Seeded Laterally Crystallized TFT’s for Vertical Device Integration,” IEEE Trans. Electron Devices, 45(9), pp. 1934–1939.
Lee,  S-W., and Joo,  K-K., 1983, “Low Temperature Poly-Si Thin Film Transistor Fabrication by Metal-Induced Lateral Crystallization,” IEEE Electron Device Lett., 17(4), pp. 160–162.
Tuckerman,  D. B., and Pease,  R. F. W., 1981, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Lett., 2(5), pp. 126–129.
Wei, X., and Joshi, Y., 2002, “Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling,” Proc. ITherm, San Diego, CA, pp. 441–448.
Kandlikar, S. G., 2003, “Heat Transfer Mechanisms During Flow Boiling In Microchannels,” Proc. 1st Int. Conference on Micro/Minichannels, Rochester, NY, ICMM2003-1005.
Peng,  X. F., Hu,  H. Y., and Wang,  B. X., 1998, “Boiling Nucleation During Liquid Flow in Microchannels,” Int. J. Heat Mass Transfer, 41(1), pp. 101–106.
Peng,  X. F., Tian,  Y., and Lee,  D. J., 2002, “Arguments on Microscale Boiling Dynamics,” Microscale Thermophys. Eng., 6(1), pp. 75–83.
Bowers,  M. B., and Mudawar,  I., 1994, “Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sinks: Part 1–Design Criteria and Heat Diffusion Constraints,” ASME J. Electron. Packag., 116, pp. 290–297.
Bowers,  M. B., and Mudawar,  I., 1994, “Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sinks: Part 2–Flow Rate and Pressure Drop Constraints,” ASME J. Electron. Packag., 116, pp. 298–305.
Stanley, R. S., Barron, R. F., and Ameel, T. A., 1997, “Two-Phase Flow in Microchannels,” DSC-Vol. 62/HTD-Vol. 34 MEMS, ASME, pp. 143–152.
Triplett,  K. A., Ghiaasiaan,  S. M., Abdel-Khalik,  S. I., and Sadowski,  D. L., 1999, “Gas-Liquid Two-Phase Flow in Microchannels, Parts I & II,” Int. J. Multiphase Flow, 25, pp. 377–410.
Akbar,  M. K., Plummer,  D. A., and Ghiaasiaan,  S. M., 2003, “On Gas-Liquid Two-Phase Flow Regimes in Microchannels,” Int. J. Multiphase Flow, 29, pp. 855–865.
Peles,  Y. P., Yarin,  L. P., and Hetsroni,  G., 2001, “Steady and Unsteady Flow in a Heated Capillary,” Int. J. Multiphase Flow, 27(4), pp. 577–598.
Hetsroni,  G., Mosyak,  A., and Segal,  Z., 2001, “Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels,” IEEE Trans. Components Packaging Tech., 23(1), pp. 16–23.
Yarin,  L. P., Ekelchik,  L. A., and Hetsroni,  G., 2002, “Two-Phase Laminar Flow in a Heated Microchannels,” Int. J. Multiphase Flow, 28(10), pp. 1589–1616.
Qu,  W., and Mudawar,  I., 2003, “Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks,” Int. J. Heat Mass Transfer, 46, pp. 2737–2753.
Qu,  W., and Mudawar,  I., 2003, “Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks–I. Experimental Investigation and Assessment of Correlation Methods,” Int. J. Heat Mass Transfer, 46, pp. 2755–2771.
Qu,  W., and Mudawar,  I., 2003, “Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks–II. Annular Two-Phase Flow Model,” Int. J. Heat Mass Transfer, 46, pp. 2773–2784.
Lee,  M., Wong,  Y. Y., Wong,  M., and Zohar,  Y., 2003, “Size and Shape Effects on Two-Phase Flow Patterns in Microchannel Forced Convection Boiling,” J. Micromech. Microeng., 13, pp. 155–164.
Koo, J., Jiang, L., Zhang, L., Zhou, P., Banerjee, S. S., Kenny, T. W., Santiago, J. G., and Goodson, K. E., 2001, “Modeling of Two-phase Microchannel Heat Sinks for VLSI Chips,” Proc. Int. MEMS Workshop, Interlaken, Switzerland, pp. 422–426.
Koo, J., Im, S., Cho, E., Prasher, R. S., Wang, E., Jiang, L., Bari, A., Campion, D., Fogg, D., Kim, M., Kenny, T. W., Santiago, J. G., and Goodson, K. E., 2002, “VLSI Hotspot Cooling Using Two-Phase Microchannel Convection,” ASME Proc. IMECE, New Orleans, LA, IMECE2002-39585.
Incropera, F. P., and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, 4th ed., John Wiley, New York.
Kays, W. M., and Crawford, M. E., 1993, Convective Heat and Mass Transfer, 3rd ed., McGraw-Hill, New York.
Kandlikar,  S. G., 1990, “A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes,” ASME J. Heat Transfer, 112, pp. 219–228.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
Harr, L., Gallagher, J. S., and Kell, G. S., 1984, NBS/NRC Steam Tables, Hemisphere, Washington.
Chiang, T.-Y., Souri, S. J., Chui, C. O., and Saraswat, K., 2001, “Thermal Analysis of Heterogeneous 3-D ICs with Various Integration Scenarios,” Tech. Dig.—Int. Electron Devices Meet., pp. 681–684.


Grahic Jump Location
Three-dimensional circuit architecture connected to a conventional heat removal device
Grahic Jump Location
Conceptual schematic of a microchannel cooling network for a 3D circuit and the thermal circuit model. (a) 3D circuit with a microchannel cooling system. (b) Thermal circuit for microchannel cooling.
Grahic Jump Location
Schematic of hierarchical 3D circuit structures fabricated by (a) wafer bonding, and (b) silicon epitaxial growth or recrystallization of polysilicon
Grahic Jump Location
Schematic of microchannels implemented in a 3D circuit and thermal modeling of microchannel cooling for a 3D circuit. Only one channel is analyzed in a cooling layer by geometric and thermal symmetries. Dotted lines indicate a control volume used in derivation of energy equations [Eqs. (1) and (2)]. (a) Schematic of microchannel cooling for a 3D circuit. (b) Thermal circuit of the jth microchannel.
Grahic Jump Location
Predictions for the effective thermal conductance and thermal resistance. (a) Effective conduction area and effective solid conductivity in the z direction. (b) Conduction thermal resistance between device layers.
Grahic Jump Location
Flowchart showing the calculation procedure used in this study
Grahic Jump Location
Two-layer 3D circuit layouts for evaluating the performance of microchannel cooling. The areas occupied by memory and logic are the same and the logic disssipates 90% of the total power consumption 53.
Grahic Jump Location
Comparison of junction temperatures in a two-layer stacked circuit for the cases of an integrated microchannel heat sink and a conventional heat sink. The total flow rate of the liquid water is 15 ml/min and the mass flux is 1.36×10−5 kg/s.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In