Thermal Transport in Nanostructured Solid-State Cooling Devices

[+] Author and Article Information
Deyu Li

Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 e-mail: deyu.li@vanderbilt.edu

Scott T. Huxtable

Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061

Alexis R. Abramson

Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106

Arun Majumdar

Department of Mechanical Engineering, University of California, Berkeley, CA 94720Materials Science Division, Lawrence Berkeley National Lab, Berkeley, CA 94720

J. Heat Transfer 127(1), 108-114 (Feb 15, 2005) (7 pages) doi:10.1115/1.1839588 History: Received May 21, 2004; Revised July 31, 2004; Online February 15, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.


Mahan,  G., Sales,  B., and Sharp,  J., 1997, “Thermoelectric Materials: New Approaches to an Old Problem,” Phys. Today, 50, pp. 42–47.
DiSalvo,  F. J., 1999, “Thermoelectric Cooling and Power Generation,” Science, 285, pp. 703–706.
Hicks,  L. D., and Dresselhaus,  M. S., 1993, “Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 47, pp. 12727–12731.
Hicks,  L. D., Harman,  T. C., and Dresselhaus,  M. S., 1993, “Use of Quantum-Well Superlattices to Obtain a High Figure of Merit from Nonconventional Thermoelectric Materials,” Appl. Phys. Lett., 63, pp. 3230–3232.
Hicks,  L. D., and Dresselhaus,  M. S., 1993, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Phys. Rev. B, 47, pp. 16631–16634.
Nolas, G. S., Sharp, J., and Goldsmith, H. J., 2001, Thermoelectric: Basic Principles and New Materials Developments, Springer, Heidelberg.
Rowe, D. M., 1995, CRC Handbook of Thermoelectrics, CRC, Boca Raton, FL.
Venkatasubramanian,  R., Siivola,  E., Colpitts,  T., and O’Quinn,  B., 2001, “Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit,” Nature (London), 413, pp. 597–602.
Harman,  T. C., Taylor,  P. J., Walsh,  M. P., and LaForge,  B. E., 2002, “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science, 297, pp. 2229–2232.
Majumdar,  A., 2004, “Thermoelectricity in Semiconductor Nanostructures,” Science, 303, pp. 777–778.
Chen,  G., 2000, “Phonon Heat Conduction in Nanostructures,” Int. J. Therm. Sci., 39, pp. 471–480.
Cahill,  D. G., Goodson,  K., and Majumdar,  A., 2002, “Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures,” J. Heat Transfer, 124, pp. 223–241.
Cahill,  D. G., Ford,  W. K., Goodson,  K. E., Mahan,  G. D., Majumdar,  A., Maris,  H. J., Merlin,  R., and Phillpot,  S. R., 2003, “Nanoscale Thermal Transport,” J. Appl. Phys., 93, pp. 793–818.
Chen,  G., and Shakouri,  A., 2002, “Heat Transfer in Nanostructures for Solid-State Energy Conversion,” J. Heat Transfer, 124, pp. 242–252.
Chen,  G., 2001, “Phonon Transport in Low-Dimensional Structures,” Semicond. Semimetals, 71, pp. 203–258.
Faghri, M., and Sundén, B., 2004, Heat and Fluid Flow in Microscale and Nanoscale Structures, WIT, Boston, MA.
Chen,  G., Zeng,  T., Borca-Tasciuc,  T., and Song,  D., 2000, “Phonon Engineering in Nanostructures for Solid-State Energy Conversion,” Mater. Sci. Eng., A, 292, pp. 155–161.
Ju,  Y. S., and Goodson,  K. E., 1999, “Phonon Scattering in Silicon Films with Thickness of Order 100 nm,” Appl. Phys. Lett., 74, pp. 3005–3007.
Narayanamurti,  V., Störmer,  H. L., Chin,  M. A., Gossard,  A. C., and Wiegmann,  W., 1979, “Selective Transmission of High-Frequency Phonons by a Superlattice: The “Dielectric” Phonon Filter,” Phys. Rev. Lett., 43, pp. 2012–2016.
Simkin,  M. V., and Mahan,  G. D., 2000, “Minimum Thermal Conductivity of Superlattices,” Phys. Rev. Lett., 84, pp. 927–930.
Ren,  S. Y., and Dow,  J. D., 1982, “Thermal Conductivity of Superlattices,” Phys. Rev. B, 25, pp. 3750–3755.
Chen,  G., 1999, “Phonon Wave Heat Conduction in Thin Films and Superlattices,” J. Heat Transfer, 121, pp. 945–953.
Yao,  T., 1987, “Thermal-Properties of AlAs/GaAs Superlattices,” Appl. Phys. Lett., 51, pp. 1798–1800.
Yu,  X. Y., Chen,  G., Verma,  A., and Smith,  J. S., 1995, “Temperature Dependence of Thermophysical Properties of GaAs/AlAs Periodic Structure,” Appl. Phys. Lett., 67, pp. 3554–3556.
Capinski,  W. S., and Maris,  H. J., 1996, “Thermal Conductivity of GaAs/AlAs Superlattices,” Physica B, 219 and 220, pp. 699–701.
Capinski,  W. S., Maris,  H. J., Cardona,  T. M., Ploog,  K., and Katzer,  D. S., 1999, “Thermal Conductivity Measurements of GaAs/AlAs Superlattices using a Picosecond Optical Pump-and-Probe Technique,” Phys. Rev. B, 59, pp. 8105–8113.
Lee,  S.-M., Cahill,  D. G., and Venkatasubramanian,  R., 1997, “Thermal Conductivity of Si-Ge Superlattices,” Appl. Phys. Lett., 70, pp. 2957–2959.
Chen,  G., and Neagu,  M., 1997, “Thermal Conductivity and Heat Transfer in Superlattices,” Appl. Phys. Lett., 71, pp. 2761–2763.
Borca-Tasciuc,  T., Liu,  W., Liu,  J., Zeng,  T., Song,  D. W., Moore,  C. D., Chen,  G., Wang,  K. L., Goorsky,  M., Redetic,  T., Gronsky,  R., Koga,  T., and Dresselhaus,  M. S., 2000, “Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices,” Superlattices Microstruct., 28, pp. 199–206.
Huxtable,  S., Abramson,  A., Tien,  C.-L., Majumdar,  A., LaBounty,  C., Fan,  X., Zheng,  G., Bowers,  J. E., Shakouri,  A., and Croke,  E. T., 2002, “Thermal Conductivity of Si/SiGe and SiGe/SiGe Superlattices,” Appl. Phys. Lett., 80, pp. 1737–1739.
Huxtable, S. T., Abramson, A. R., Majumdar, A., Shakouri, A., Croke, E. T., and Ahn, C. C., 2002, “The Role of Defects and Acoustic Impedance Mismatch on Heat Conduction in SiGe Based Superlattices,” Proc. ASME IMECE, (MEMS Division), New Orleans, LA, pp. 19–23.
Abramson,  A. R., Tien,  C. L., and Majumdar,  A., 2002, “Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study,” J. Heat Transfer, 124, pp. 963–970.
Chen,  Y. F., Li,  D., Yang,  J., Wu,  Y., Lukes,  J. R., and Majumdar,  A., 2004, “Molecular Dynamics Study of the Lattice Thermal Conductivity of Kr/Ar Superlattice Nanowires,” Physica B, 349, pp. 270–280.
Huxtable, S. T., Abramson, A. R., Majumdar, A., Shakouri, A., Croke, E. T., and Ahn, C. C., 2004 (unpublished).
Touzelbaev,  M. N., Zhou,  P., Venkatasubramanian,  R., and Goodson,  K. E., 2001, “Thermal Characterization of Bi2Te3/Sb2Te3 Superlattices,” J. Appl. Phys., 90, pp. 763–767.
Auld, B. A., 1973, Acoustic Fields and Waves in Solids, Wiley, New York.
Nishiguchi,  N., Ando,  Y., and Wybourne,  M. N., 1997, “Acoustic Phonon Modes of Rectangular Quantum Wires,” J. Phys.: Condens. Matter, 9, pp. 5751–5764.
Yu,  S. G., Kim,  K. W., Stroscio,  M. A., and Iafrate,  G. J., 1995, “Electron-Acoustic-Phonon Scattering Rates in Cylindrical Quantum Wires,” Phys. Rev. B, 51, pp. 4695–4698.
Seyler,  J., and Wybourne,  M. N., 1992, “Acoustic Waveguide Modes Observed in Electrically Heated Metal Wires,” Phys. Rev. Lett., 69, pp. 1427–1430.
Papandrew,  A. B., Yue,  A. F., Fultz,  B., Halevy,  I., Sturhahn,  W., Toellner,  T. S., Alp,  E. E., and Mao,  H.-K., 2004, “Vibrational Modes in Nanocrystalline Iron under High Pressure,” Phys. Rev. B, 69, p. 144301.
Shi,  L., Li,  D., Yu,  C., Jang,  W., Yao,  Z., and Majumdar,  A., 2003, “Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device,” J. Heat Transfer, 125, pp. 881–888.
Li,  D., Wu,  Y., Kim,  P., Shi,  L., Yang,  P., and Majumdar,  A., 2003, “Thermal Conductivity of Individual Silicon Nanowires,” Appl. Phys. Lett., 83, pp. 2934–2936.
Mingo,  N., Yang,  L., Li,  D., and Majumdar,  A., 2003, “Predicting the Thermal Conductivity of Si and Ge Nanowires,” Nano Lett., 3, pp. 1713–1716.
Soyez,  G., Eastman,  J. A., Thompson,  L. J., Bai,  G. R., Baldo,  P. M., McCormick,  A. W., DiMelfi,  R. J., Elmustafa,  A. A., Tambwe,  M. F., and Stone,  D. S., 2000, “Grain-Size-Dependent Thermal Conductivity of Nanocrystalline Yttria-Stabilized Zirconia Film Grown by Metal-Organic Chemical Vapor Deposition,” Appl. Phys. Lett., 77, pp. 1155–1157.
Yang,  H.-S., Bai,  G.-R., Thompson,  L. J., and Eastman,  J. A., 2002, “Interfacial Thermal Resistance in Nanocrystalline Yttria-Stabilized Zirconia,” Acta Mater., 50, pp. 2309–2317.
Li,  D., Wu,  Y., Fan,  R., Yang,  P., and Majumdar,  A., 2003, “Thermal Conductivity of Si/SiGe Superlattice Nanowires,” Appl. Phys. Lett., 83, pp. 3186–3188.
Goldsmid,  H. J., and Penn,  A. W., 1968, “Boundary Scattering of Phonons in Solid Solutions,” Phys. Lett., 27A, pp. 523–524.
Tighe,  T. S., Worlock,  J. M., and Roukes,  M. L., 1997, “Direct Thermal Conductance Measurements on Suspended Monocrystalline Nanostructures,” Appl. Phys. Lett., 70, pp. 2687–2689.
Fon,  W., Schwab,  K. C., Worlock,  J. M., and Roukes,  M. L., 2002, “Phonon Scattering Mechanisms in Suspended Nanostructures from 4 to 40 K,” Phys. Rev. B, 66, p. 045302.
Schwab,  K., Fon,  W., Henriksen,  E. A., Worlock,  J. M., and Roukes,  M. L., 2000, “Quantized Thermal Conductance: Measurements in Nanostructures,” Physica B, 280, pp. 458–459.
Schwab,  K., Henriksen,  E. A., Worlock,  J. M., and Roukes,  M. L., 2000, “Measurement of the Quantum of Thermal Conductance,” Nature (London), 404, pp. 974–977.
Rego,  L. G. C., and Kirczenow,  G., 1998, “Quantized Thermal Conductance of Dielectric Quantum Wires,” Phys. Rev. Lett., 81, pp. 232–235.
Ghoshal,  U., Ghoshal,  S., McDowell,  C., and Shi,  L., 2002, “Enhanced Thermoelectric Cooling at Cold Junction Interfaces,” Appl. Phys. Lett., 80, pp. 3006–3008.
Fan,  X., Zeng,  G., LaBounty,  C., Bowers,  J. E., Croke,  E., Ahn,  C., Huxtable,  S., Majumdar,  A., and Shakouri,  A., 2001, “SiGeC/Si Superlattice Microcoolers,” Appl. Phys. Lett., 78, pp. 1580–1582.
Abramson,  A. R., Huxtable,  S. T., Kim,  W. C., Yan,  H., Wu,  Y., Majumdar,  A., Tien,  C. L., and Yang,  P., 2004, “Fabrication and Characterization of A Nanowire/Polymer-Based Nanocomposite for a Prototype Thermoelectric Device,” J. Microelectromech. Syst., 13, pp. 505–513.
da Silva,  L. W., and Kaviany,  M., 2004, “Micro-Thermoelectric Cooler: Interfacial Effects on Thermal and Electrical Transport,” Int. J. Heat Mass Transfer, 47, pp. 2417–2435.
Dresselhaus,  M. S., Lin,  Y.-M., Cronin,  S. B., Rabin,  O., Black,  M. R., Dresselhaus,  G., and Koga,  T., 2001, “Quantum Wells and Quantum Wires for Potential Thermoelectric Applications,” Semicond. Semimetals, 71, pp. 1–121.


Grahic Jump Location
Thermoelectric improvements (see Ref. 10). History of thermoelectric figure of merit, ZT, at 300 K. Since the discovery of the thermoelectric properties of Bi2Te3 and similar alloys with Sb and Se in the 1950s, no bulk materials with (ZT)300 K>1 have been discovered. Recent studies in nanostructured thermoelectric materials have led to a dramatic increase in (ZT)300 K. In the figure, RV denotes Venkatasubramanian et al.’s data in Ref. 8 and TH denotes Harman et al.’s data in Ref. 9
Grahic Jump Location
Cross-plane thermal conductivity of Si/SixGe1−x superlattices and a 3.5-μm-thick Si0.9Ge0.1 alloy. The labels on the plot refer to the period thickness (see Refs. 3031). Since thermal conductivity data as a function of temperature for SixGe1−x alloys of arbitrary x is not readily available, all comparisons are made with a Si0.9Ge0.1 alloy. Since the thermal conductivity SixGe1−x alloy changes only marginally for 0.1<x<0.9 this makes for a reasonable comparison
Grahic Jump Location
Cross-plane thermal conductivity of SixGe1−x/SiyGe1−y superlattices and a 3.5-μm-thick Si0.9Ge0.1 alloy. The labels on the plot refer to the period thickness (see Ref. 31)
Grahic Jump Location
Thermal conductivity of single crystalline Si nanowires (see Ref. 42). The solid line in (a) is the best fit from Ref. 43. The low temperature behavior is shown in (b)
Grahic Jump Location
Thermal conductivity of Si/SixGe1−x superlattice nanowires (see Ref. 46). The thermal conductivities of a Si/Si0.3Ge0.7 superlattice film and Si0.9Ge0.1 alloy film are also shown for comparison
Grahic Jump Location
Device performance of a Si/SiGeC thermoelectric cooler (see Ref. 54)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In