Shah, R. K., and London, A. L., 1978, "*Laminar Flow Forced Convection in Ducts*", Academic Press, New York.

Shah, R. K., and Bhatti, M. S., 1987, “Laminar Convective Heat Transfer in Ducts,” "*Handbook of Single-Phase Convective Heat Transfer*", S.Kakac, R.K.Shah, and W.Aung, eds., Wiley, New York, Chap. 3.

Schiller, L., 1922, “Die Entwicklung der Laminaren Geschwindigkeitsverteilung und Ihre Bedeutung fur Zahigkeitsmessungen,” Z. Angew. Math. Mech., 2 , pp. 96–106.

Schlichting, H., 1934, “Laminare Kanaleinlaufstromung,” Z. Angew. Math. Mech., 14 , pp. 368–373.

Schlichting, H., 1968, "*Boundary-Layer Theory*", 6th English Edition, McGraw-Hill, New York, pp. 176–177.

Schmidt, F. W., and Zeldin, B., 1969, “Laminar Flows in Inlet Section of Tubs and Ducts,” AIChE J.

[CrossRef], 15 (4), pp. 612–614.

Langhaar, H. L., 1942, “Steady Flow in the Transition Length of a Straight Tube,” ASME J. Appl. Mech., 9 , pp. A55–A58.

Han, L. S., 1960, “Hydrodynamic Entrance Lengths for Incompressible Laminar Flow in Rectangular Ducts,” ASME J. Appl. Mech., 27 , pp. 403–409.

Lundgren, T. S., Sparrow, E. M., and Starr, J. B., 1964, “Pressure Drop due to the Entrance Region in Ducts of Arbitrary Cross-Section,” ASME J. Basic Eng., 86 , pp. 620–626.

Prakash, C., and Liu, Ye-Di., 1983, “Analysis of Laminar Flow and Heat Transfer in the Entrance Region of an Internally Finned Circular Duct,” ASME J. Heat Transfer, 107 , pp. 84–91.

Asako, Y., and Faghri, M., 1988, “Developing Laminar Flow and Heat Transfer in the Entrance Region of Regular Polygonal Ducts,” Int. J. Heat Mass Transfer

[CrossRef], 31 , pp. 2590–2593.

Asako, Y., Nakamura, M., and Faghri, M., 1988, “Three-Dimensional Laminar Heat Transfer and Fluid Flow Characteristics in the Entrance Region of a Rhombic Duct,” ASME J. Heat Transfer, 110 , pp. 855–861.

Hwang, G. J., Cheng, Y. C., and Ng, M. L., 1993, “Developing Laminar Flow and Heat Transfer in a Square Duct With One-Walled Injection and Suction,” Int. J. Heat Mass Transfer, 36 (9), pp. 2429–2440.

Shah, R. K., 1975, “Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry,” Int. J. Heat Mass Transfer

[CrossRef], 18 , pp. 849–862.

Flockhart, S. M., and Dhariwal, R. S., 1998, “Experimental and Numerical Investigation Into the Flow Characteristics of Channels Etched in ⟨100⟩ Silicon,” ASME J. Fluids Eng., 120 , pp. 291–295.

Sadasivam, R., Manglik, R. M., and Jog, M. A., 1999, “Fully Developed Force Convection Through Trapezoidal and Hexagonal Ducts,” Int. J. Heat Mass Transfer, 42 , pp. 4321–4331.

Morini, G. L., 2004, “Laminar to Turbulent Flow Transition in Microchannels,” Microscale Thermophys. Eng., 8 , pp. 15–30.

Lawal, A., and Mujumdar, A. S., 1984, “Forced Convection Heat Transfer to a Power-Law Fluid in Arbitrary Cross-Section Ducts,” Can. J. Chem. Eng., 62 , pp. 326–333.

Lawal, A., and Mujumdar, A. S., 1985, “Developing Flow and Heat Transfer to Power-Law Fluids in Square, Trapezoidal and Pentagonal Ducts,” Int. Commun. Heat Mass Transfer, 12 , pp. 23–31.

Patankar, S. V., and Spalding, D. B., 1971, “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” Int. J. Heat Mass Transfer

[CrossRef], 15 , pp. 1787–1806.

Briley, W. R., 1974, “Numerical Methods for Predicting Three-Dimensional Steady Viscous Flow in Ducts,” J. Comput. Phys., 14 , pp. 8–28.

Farhanieh, B., and Sunden, B., 1991, “Three-Dimensional Laminar Flow and Heat Transfer in the Entrance Region of Trapezoidal Ducts,” Int. J. Numer. Methods Fluids, 13 , pp. 537–556.

Chorin, H. A., 1968, “Numerical Solution of the Navier-Stokes Equations,” Math. Comput., 22 , pp. 745–762.

Dwyer, H. A., 1989, “Calculation of Droplet Dynamics in High Temperature Environments,” Prog. Energy Combust. Sci.

[CrossRef], 15 , pp. 131–158.

Wigton, L. B., Yu, N. J., and Young, D. P., 1985, “GMRES Acceleration of Computational Fluid Dynamics Codes,” "*AIAA Computational Fluid Dynamics Meeting*", Cincinnati, pp. 67–74.

Dwyer, H. A., Cheer, A. Y., Rutaganira, T., and Shacheraghi, N., 2001, “Calculation of Unsteady Flows in Curved Pipes,” ASME J. Fluids Eng.

[CrossRef], 123 , pp. 869–877.

Beavers, G. S., Sparrow, E. M., and Magnuson, R. A., 1970, “Experiments on Hydrodynamically Developing Flow in Rectangular Ducts of Arbitrary Aspect Ratio,” Int. J. Heat Mass Transfer

[CrossRef], 13 , pp. 689–720.

Wiginton, C. L., and Dalton, C., 1968, “Incompressible Laminar Flow in the Entrance Region of a Rectangular Duct,” "*12th Int. Congr. Appl. Mech.*", Stanford University, Stanford, CA.

Karniadakis, G. E., and Beskok, A., 2002, "*Micro Flows, Fundamentals and Simulation*", Springer-Verlag, Berlin, Chap. 4.

McComas, S. T., 1967, “Hydrodynamic Entrance Lengths for Ducts of Arbitrary Cross Section,” ASME J. Basic Eng., 89 , pp. 847–850.

Wiginton, C. L., and Dalton, C., 1970, “Incompressible Laminar Flow in the Entrance Region of a Rectangular Duct,” ASME J. Appl. Mech., 43 , pp. 854–856.

Pahor, S., and Strnad, J., 1961, “A Note on Heat Transfer in Laminar Flow Through a Gap,” Appl. Sci. Res., Sect. A, 10 , pp. 81–84.

Aparecido, J. B., and Cotta, R. M., 1990, “Thermally Developing Laminar Flow Inside Rectangular Ducts,” Int. J. Heat Mass Transfer

[CrossRef], 33 , pp. 341–347.