Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J., 2001, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles” Appl. Phys. Lett.

[CrossRef], 78 , pp. 718–720.

Lee, S., Choi, S. U.-S., Li, S., and Eastman, J. A., 1999, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” ASME J. Heat Transfer, 121 , pp. 280–289.

Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A., 2001, “Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,” Appl. Phys. Lett.

[CrossRef], 79 , pp. 2252–2254.

Xuan, Y., and Li, Q., 2000, “Heat Transfer Enhancement of Nanofluids,” Int. J. Heat Mass Transfer, 21 , pp. 58–64.

Maxwell, J. C., 1891, "*A Treatise on Electricity and Magnetism*", 3rd ed., Clarendon Press, 1954 reprint, Dover, New York, pp. 435–441.

Batchelor, G. K., 1972, “Sedimentation in a Dilute Dispersion Of Spheres,” J. Fluid Mech., 52 , pp. 45–268.

Batchelor, G. K., and Green, J. T., 1972, “The Hydrodynamic Interaction of Two Small Freely-Moving Spheres in a Linear Flow Field,” J. Fluid Mech., 56 , pp. 375–400.

Hamilton, R. L., and Crosser, O. K., 1962, “Thermal Conductivity of Heterogeneous Two-Component Systems,” Ind. Eng. Chem. Fundam.

[CrossRef], 1 , pp. 187–191.

Jeffrey, D. J., 1973, “Conduction Through a Random Suspension of Spheres,” Proc. R. Soc. London, Ser. A, 335 , pp. 355–367.

Davis, R. H., 1986, “The Effective Thermal Conductivity of a Composite Material With Spherical Inclusions,” Int. J. Thermophys.

[CrossRef], 7 , pp. 609–620.

Lu, S., and Lin, H., 1996, “Effective Conductivity of Composites Containing Aligned Spheroidal Inclusions of Finite Conductivity,” J. Appl. Phys.

[CrossRef], 79 , pp. 6761–6769.

Bonnecaze, R. T., and Brady, J. F., 1990, “A Method for Determining the Effective Conductivity of Dispersions of Particles,” Proc. R. Soc. London, Ser. A, 430 , pp. 285–313.

Bonnecaze, R. T., and Brady, J. F., 1991, “The Effective Conductivity of Random Suspensions of Spherical Particles,” Proc. R. Soc. London, Ser. A, 432 , pp. 445–465.

Keblinski, P., Phillpot, S. R., Choi, S. U. S., and Eastman, J. A., 2002, “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),” Int. J. Heat Mass Transfer

[CrossRef], 45 , pp. 855–863.

Xue, L., Keblinski, P., Phillpot, S. R., Choi, S. U.-S., and Eastman, J. A., 2004, “Effect of Fluid Layering at the Liquid-Solid Interface on Thermal Transport,” Int. J. Heat Mass Transfer

[CrossRef], 47 , pp. 4277–4284.

Prasher, R., Bhattacharya, P., and Phelan, P. E., 2005, “Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids),” Phys. Rev. Lett.

[CrossRef], 94 , p. 025901.

Das, S. K., Putra, N., Thiesen, P., and Roetzel, W., 2003, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” ASME J. Heat Transfer

[CrossRef], 125 , pp. 567–574.

Kumar, D. H., Patel, H. E., Rajeev Kumar, V. R., Sundararajan, T., Pradeep, T., and Das, S. K., 2004, “Model for Heat Conduction in Nanofluids,” Phys. Rev. Lett.

[CrossRef], 93 , p. 144301.

Jang, S. P., and Choi, S. U.-S., 2004, “Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,” Appl. Phys. Lett.

[CrossRef], 84 (21), pp. 4316–4318.

Chen, G., 1996, “Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles,” ASME J. Heat Transfer, 118 , pp. 539–545.

Chen, G., 2000, “Particularities of Heat Conduction in Nanostructures,” J. Nanopart. Res.

[CrossRef], 2 , pp. 199–204.

Chen, G., 2001, “Balistic-Diffusive Heat-Conduction Equations,” Phys. Rev. Lett.

[CrossRef], 86 (11), pp. 2297–2300.

Nield, D., and Bejan, A., 1999, "*Convection in Porous Media*", 2nd ed., Springer, New York.

Vadasz, J. J., Govender, S., and Vadasz, P., 2005, “Heat Transfer Enhancement in Nanofluids Suspensions: Possible Mechanisms and Explanations,” Int. J. Heat Mass Transfer, 48 , pp. 2673–2683.

Hammerschmidt, U., and Sabuga, W., 2000, “Transient Hot Wire (THW) Method: Uncertainty Assessment,” Int. J. Thermophys., 21 , pp. 1255–1278.

De Groot, J. J., Kestin, J., and Sookiazian, H., 1974, “Instrument to Measure the Thermal Conductivity of Gases,” Physica (Utrecht)

[CrossRef], 75 , pp. 454–482.

Healy, J. J., de Groot, J. J., and Kestin, J., 1976, “The Theory of the Transient Hot-Wire Method for Measuring Thermal Conductivity,” Physica, 82C , pp. 392–408.

Kestin, J., and Wakeham, W. A., 1978, “A Contribution to the Theory of the Transient Hot-Wire Technique for Thermal Conductivity Measurements,” Physica A

[CrossRef], 92 , pp. 102–116.

Assael, M. J., Dix, M., Gialou, K., Vozar, L., and Wakeham, W. A., 2002, “Application of the Transient Hot-Wire Technique to the Measurement of the Thermal Conductivity of Solids,” Int. J. Thermophys., 23 , 615–633.

Nagasaka, Y., and Nagashima, A., 1981, “Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method,” J. Phys. E

[CrossRef], 14 , pp. 1435–1440.

Assael, M. J., Chen, C.-F., Metaxa, I., and Wakeham, W. A., 2004, “Thermal Conductivity of Suspensions of Carbon Nanotubes in Water,” Int. J. Thermophys., 25 , 971–985.

Tzou, D. Y., 1997, "*Macro-to-Microscale Heat Transfer The Lagging Behavior*", Taylor and Francis, Washington, D.C.

Tzou, D. Y., 2001, “Temperature-Dependent Thermal Lagging in Ultrafast Laser Heating,” Int. J. Heat Mass Transfer

[CrossRef], 44 , pp. 1725–1734.

Vadasz, P., 2005, “Explicit Conditions for Local Thermal Equilibrium in Porous Media Conduction,” Transp. Porous Media, 59 , pp. 341–355.

Vadasz, P., 2005, “Absence of Oscillations and Resonance in Porous Media Dual-Phase-Lagging Fourier Heat Conduction,” ASME J. Heat Transfer

[CrossRef], 127 , pp. 307–314.

Vadasz, P., 2005, “Lack of Oscillations in Dual-Phase-Lagging Heat Conduction for a Porous Slab Subject to Imposed Heat Flux and Temperature,” Int. J. Heat Mass Transfer, 48 (14), pp. 2822–2828.

Özisik, M. N., 1993, "*Heat Conduction*", 2nd ed., Wiley, New York.

Quintard, M., and Whitaker, S., 1995, “Local Thermal Equilibrium for Transient Heat Conduction: Theory and Comparison With Numerical Experiments,” Int. J. Heat Mass Transfer

[CrossRef], 38 , pp. 2779–2796.

Alazmi, B., and Vafai, K., 2002, “Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Nonequilibrium Conditions,” Int. J. Heat Mass Transfer

[CrossRef], 45 , pp. 3071–3087.

Amiri, A., and Vafai, K., 1994, “Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media,” Int. J. Heat Mass Transfer, 37 , pp. 934–954.

Wakao, N., Kaguei, S., and Funazkri, T., 1979, “Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds,” Chem. Eng. Sci.

[CrossRef], 34 , pp. 325–336.

Wakao, N., and Kaguei, S., 1982, “Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds,” "*Heat and Mass Transfer in Packed Beds*", Gordon and Breach, New York.

Kuwahara, F., Shirota, M., and Nakayama, A., 2001, “A Numerical Study of Interfacial Convective Heat Transfer Coefficient in Two-Energy Equation Model for Convection in Porous Media,” Int. J. Heat Mass Transfer

[CrossRef], 44 , pp. 1153–1159.

Nield, D. A., 1998, “Effects of Local Thermal Nonequilibrium in Steady Convective Processes in a Saturated Porous Medium: Forced Convection in a Channel,” J. Porous Media, 1 , pp. 181–186.

Huxtable, S. T., Cahill, D. G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M., Strano, M. S., Siddons, G., Shim, M., and Keblinski, P., 2003, “Interfacial Heat Flow in Carbon Nanotube Suspensions,” Nat. Mater.

[CrossRef], 2 , pp. 731–734.