Hicks, L. D., and Dresselhaus, M. S., 1993, “Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B

[CrossRef], 47 (19), pp. 12727–12731.

Hicks, L. D., Harman, T. C., and Dresselhaus, M. S., 1993, “Use of Quantum-Well Superlattices to Obtain a High Figure of Merit From Nonconventional Thermoelectric Materials,” Appl. Phys. Lett.

[CrossRef], 63 (23), pp. 3230–3232.

Tritt, T. M., 2001, "*Recent Trends in Thermoelectric Materials Research III: Semiconductors and Semimetals*", Academic Press, New York, Vol. 3 .

Simkin, M. V., and Mahan, G. D., 2000, “Minimum Thermal Conductivity of Superlattices,” Phys. Rev. Lett.

[CrossRef], 84 (5), pp. 927–930.

Koga, T., Cronin, S. B., Dresselhaus, M. S., Liu, J. L., and Wang, K. L., 2000, “Experimental Proof-of-Principle Investigation of Enhanced Z3DT in 001 Oriented Si∕Ge Superlattices,” Appl. Phys. Lett.

[CrossRef], 77 (10), pp. 1490–1492.

Yang, B., Liu, J., Wang, K., and Chen, G., 2001, “Characterization of Cross-Plane Thermo-Electric Properties of Si∕Ge Superlattices,” "*Proc. of 20th International Conference on Thermoelectrics (ICT)*", Beijing, China, June, pp. 344–347.

Yang, B., Liu, J. L., Wang, K. L., and Chen, G., 2002, “Simultaneous Measurements of Seebeck Coefficient and Thermal Conductivity Across Superlattice,” Appl. Phys. Lett.

[CrossRef], 80 (10), pp. 1758–1760.

Harman, T. C., Taylor, P. J., Walsh, M. P., and La Forge, B. E., 2002, “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science

[CrossRef], 297 (27), pp. 2229–2232.

Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B., 2001, “Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit,” Nature (London)

[CrossRef], 413 (11), pp. 597–602.

Chen, G., 1998, “Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices,” Phys. Rev. B

[CrossRef], 57 (23), pp. 14958–14973.

Chen, G., 1999, “Phonon Wave Heat Conduction in Thin Films and Superlattices,” ASME J. Heat Transfer, 121 , pp. 945–953.

Dresselhaus, M. S., 2003, “Nanostructures and Energy Conversion Devices,” "*Proc. of 2003 Rohsenow Symposium on Future Trends of Heat Transfer*", Cambridge, MA, May, pp. 1–3.

Rahman, A., Ghosh, A., and Lundstrom, M., “Assessment of Ge n-MOSFETs by Quantum Simulation,” IEEE International Electron Devices Meeting (IEDM) Technical Digest, pp. 19.4.1–19.4.4, December 2003.

Mazumder, P., Kulkarni, S., Bhattacharya, M., Sun, J. P., and Haddad, G. I., 1998, “Digital Circuit Applications of Resonant Tunneling Devices,” Proc. IEEE

[CrossRef], 86 (4), pp. 664–686.

Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., and Phillpot, S. R., 2003, “Nanoscale Thermal Transport,” J. Appl. Phys.

[CrossRef], 93 (2), pp. 793–818.

Asheghi, M., Leung, Y. K., Wong, S. S., and Goodson, K. E., 1997, “Phonon-Boundary Scattering in Thin Silicon Layers,” Appl. Phys. Lett.

[CrossRef], 71 (13), pp. 1798–1800.

Zhou, J. H., Jin, C. G., Li, X. G., and Shi, L., 2005, “Thermoelectric Properties of Individual Electrodeposited Bismuth Telluride Nanowires,” Appl. Phys. Lett.

[CrossRef], 87 (13), p. 133109.

Blotekjaer, K., 1970, “Transport Equations for Electrons in Two-Valley Semiconductors,” IEEE Trans. Electron Devices, 17 (1), pp. 38–47.

Lugli, P., 1990, “The Monte Carlo Method for Semiconductor Device and Process Modeling,” IEEE Trans. Comput.-Aided Des.

[CrossRef], 9 (11), pp. 1164–1176.

Mazumder, S., and Majumdar, A., 2001, “Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization,” ASME J. Heat Transfer

[CrossRef], 123 (4), pp. 749–759.

Lai, J., and Majumdar, A., 1996, “Concurrent Thermal and Electrical Modeling of Sub-Micrometer Silicon Devices,” J. Appl. Phys.

[CrossRef], 79 (9), pp. 7353–7361.

Raman, A., Walker, D. G., and Fisher, T. S., 2003, “Simulation of Nonequilibrium Thermal Effects in Power LDMOS Transistors,” Solid-State Electron.

[CrossRef], 47 (8), pp. 1265–1273.

Murthy, J. Y., and Mathur, S. R., 2002, “Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method,” ASME J. Heat Transfer

[CrossRef], 124 (6), pp. 1176–1181.

Asenov, A., Watling, J. R., Brown, A. R., and Ferry, D. K., 2002, “The Use of Quantum Potentials for Confinement and Tunnelling in Semiconductor Devices,” J. Comput. Electron.

[CrossRef], 1 (4), pp. 503–513.

Tang, T., and Wu, B., 2004, “Quantum Correction for the Monte Carlo Simulation Via the Effective Conduction-Band Edge Equation,” Semicond. Sci. Technol.

[CrossRef], 19 (1), pp. 54–60.

Lent, C. S., and Kirkner, D. J., 1990, “The Quantum Transmitting Boundary Method,” J. Appl. Phys.

[CrossRef], 67 (10), pp. 6353–6359.

Laux, S. E., Kumar, A., and Fischetti, M. V., 2002, “Ballistic Fet Modeling Using QDAME: Quantum Device Analysis by Modal Evaluation,” IEEE Trans. Nanotechnol., 1 (4), pp. 255–259.

Datta, S., 1989, “Steady-State Quantum Kinetic Equation,” Phys. Rev. B

[CrossRef], 40 (8), pp. 5830–5833.

Datta, S., 1990, “A Simple Kinetic Equation for Steady-State Quantum Transport,” J. Phys.: Condens. Matter

[CrossRef], 2 (40), pp. 8023–8052.

Datta, S., 2000, “Nanoscale Device Modeling: The Green’s Function Method,” Superlattices Microstruct.

[CrossRef], 28 (4), pp. 253–278.

Datta, S., 2005, "*Quantum Transport: Atom to Transistor*", Cambridge University Press, Cambridge, MA.

Bulusu, A., and Walker, D. G., 2005, “Modeling of Electron Transport in Thin Films With Quantum and Scattering Effects,” ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS and Electronic Systems, San Francisco, July, ASME Paper No. IPACK2005–73212.

Szafer, A., and Stone, A. D., 1989, “Theory of Quantum Conduction Through a Constriction,” Phys. Rev. Lett.

[CrossRef], 62 (3), pp. 300–303.

Lundstrom, M., and Ren, Z., 2002, “Essential Physics of Carrier Transport in Nanoscale MOSFETs,” IEEE Trans. Electron Devices

[CrossRef], 49 (1), pp. 133–141.

Tien, C.-L., Majumdar, A., and Gerner, F.M., eds. 1998, "*Microscale Energy Transport*", Taylor & Francis, New York, pp. 3–94.

Patankar, S. V., 1980, "*Numerical Heat Transfer*", Taylor and Francis, New York.

Muller, R., and Kamins, T., 1986, "*Device Electronics for Integrated Circuits*", Wiley, New York.

Yang, B., Liu, W. L., Liu, J. L., Wang, K. L., and Chen, G., 2002, “Measurements of Anisotropic Thermoelectric Properties in Superlattices,” Appl. Phys. Lett.

[CrossRef], 81 (19), pp. 3588–3590.

Geballe, T. H., and Hull, G. W., 1955, “Seebeck Effect in Silicon,” Phys. Rev.

[CrossRef], 98 (4), pp. 940–948.

Bulusu, A., and Walker, D. G., 2006, “Effect of Quantum Confinement on Thermoelectric Properties of 2D and 1D Semiconductor Thin Films,” "*Proc. of ITherm*", San Diego, July.

Dismukes, J. P., Ekstrom, L., Steigmeier, E. F., Kudman, I., and Beers, D. S., 1964, “Thermal and Electrical Properties of Heavily Doped Ge‐Si Alloys up to 1300k,” J. Appl. Phys.

[CrossRef], 35 (10), pp. 2899–2907.

Liu, W. L., Tasciuc, T. B., Liu, J. L., Taka, K., Wang, K. L., Dresselhaus, M. S., and Chen, G., 2001, “In-Plane Thermoelectric Properties of Si∕Ge Superlattices,” "*Proc. of 20th International Conference on Thermoelectrics (ICT)*", Beijing, China, July, pp. 340–343.

Liu, W. L., Chen, G., Liu, J. L., and Wang, K. L., 2002, “Quantum and Classical Size Effects on Thermoelectric Transport in Si∕Ge Superlattices,” "*Proc. of 21st International Conference on Thermoelectrics (ICT)*", pp. 130–134.