Raja, L. L., Kee, R. J., Deutschmann, O., Warnatz, J., and Schmidt, L. D., 2000, “A Critical Evaluation of Navier-Stokes, Boundary-Layer, and Plug-Flow Models of the Flow and Chemistry in a Catalytic-Combustion Monolith,” Catal. Today

[CrossRef], 59 , pp. 47–60.

Tischer, S., Correa, C., and Deutschmann, O., 2001, “Transient Three-Dimensional Simulations of a Catalytic Combustion Monolith Using Detailed Models for Heterogeneous and Homogeneous Reactions and Transport Phenomena,” Catal. Today

[CrossRef], 69 , pp. 57–62.

Pope, S. B., 1997, “Computationally Efficient Implementation of Combustion Chemistry Using In Situ Adaptive Tabulation,” Combust. Theory Modell.

[CrossRef], 1 , pp. 41–63.

Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 2001, "*Transport Phenomena*", 2nd ed., Wiley, New York.

Kuo, K. K., 1986, "*Principles of Combustion*", Wiley, New York.

Whitaker, S., 1983, "*Fundamental Principles of Heat Transfer*", Krieger, Melbourne, FL.

Kumar, A., and Mazumder, S., 2007, “Assessment of the Dilute Approximation for the Prediction of Combined Heat and Mass Transfer Rates in Multi-Component Systems,” Heat and Mass Transfer, published online, doi: 10 1007/s00231-006-0223-6

Wangard, W., Dandy, D. S., and Miller, B. J., 2001, “A Numerically Stable Method for Integration of the Multi-Component Species Diffusion Equations,” J. Comput. Phys., 174 , pp. 460–472.

Mazumder, S., 2006, “Critical Assessment of the Stability and Convergence of the Equations of Multi-Component Diffusion,” J. Comput. Phys., 212 (2), pp. 383–392.

Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., 1954, "*Molecular Theory of Gases and Liquids*", Wiley, New York.

Sutton, K., and Gnoffo, P. A., 1998, “Multicomponent Diffusion With Application to Computational Aerothermodynamics,” AIAA paper No. 98-2575.

Coltrin, M., Kee, R., and Rupley, F., 1991, “Surface Chemkin: A General Formalism and Software for Analyzing Heterogeneous Chemical Kinetics at Gas-Solid Interfaces,” Int. J. Chem. Kinet.

[CrossRef], 23 , pp. 1111–1128.

Mazumder, S., and Lowry, S. A., 2001, “The Treatment of Reacting Surfaces for Finite-Volume Schemes on Unstructured Meshes,” J. Comput. Phys., 173 (2), pp. 512–526.

Kaviany, M., 1991, "*Principles of Heat Transfer in Porous Media*", Springer, New York.

Whitaker, S., 1996, “The Forchheimer Equation: A Theoretical Development,” Transp. Porous Media

[CrossRef], 25 , pp. 27–61.

Mazumder, S., and Sengupta, D., 2002, “Subgrid Scale Modeling of Heterogeneous Chemical Reactions and Transport in Full-Scale Catalytic Converters,” Combust. Flame, 131 (1–2), pp. 85–97.

Chatterjee, D., Deutschmann, O., and Warnatz, J., 2001, “Detailed Surface Reaction Mechanism in a Three-Way Catalyst,” Faraday Discuss.

[CrossRef], 119 , pp. 371–384.

Holland, J., 1975, "*Adaptation in Natural and Artificial Systems*", University of Michigan Press, Ann Arbor, MI.

Homma, R., and Chen, J., 2001, “Combustion Process Optimization by Genetic Algorithms: Reduction of NO2 Emission via Optimal Post-Flame Process,” Proc. Combust. Inst., 28 , pp. 2483–2489.

Elliott, L., Ingham, D., Kyne, A., Mera, N., Pourkashanian, M., and Wilson, C., 2003, “Incorporation of Physical Bounds on Rate Parameters for Reaction Mechanism Optimisation Using Genetic Algorithms,” Combust. Sci. Technol., 175 (4), pp. 619–648.

Elliott, L., Ingham, D., Kyne, A., Mera, N., Pourkashanian, M., and Wilson, C., 2004, “Genetic Algorithms for Optimisation of Chemical Kinetics Reaction Mechanisms,” Prog. Energy Combust. Sci., 30 (3), pp. 297–328.

Takahashi, T., Funatsu, K., and Ema, Y., 2005, “Automatic Modeling of Reaction Systems Using Genetic Algorithms and its Application to Chemical Vapor Deposition Processes: Advanced Utilizations of Simulators for Chemical Systems,” Meas. Sci. Technol., 16 , pp. 278–284.

Majumdar, S., and Mitra, K., 2004, “Modeling of Reaction Network and its Optimization by Genetic Algorithms,” Chem. Eng. J., 100 , pp. 109–118.

Chen, J., Blasco, J., Fueyo, N., and Dopazo, C., 2001, “An Economical Strategy for Storage of Chemical Kinetics: Fitting In Situ Adaptive Tabulation With Artificial Neural Networks,” Proc. Combust. Inst., 28 , pp. 115–121.

Kapoor, R., and Menon, S., 2002, “Computational Issues for Simulating Finite-rate Kinetics in LES,” "*Proceedings of the ASME Turbo-Expo, IGTI*", 3–6 June, Amsterdam, Netherlands, Vol. 1 , pp. 781–789.

Li, G., Rosenthal, C., and Rabitz, H., 2001, “High Dimensional Model Representations,” TASK Q., 105 (33), pp. 7765–7777.

Shorter, J., Ip, P., and Rabitz, H., 1999, “An Efficient Chemical Kinetics Solver Using High Dimensional Model Representation,” TASK Q., 103 , pp. 7192–7198.

Wang, S., Levy, H., Li, G., and Rabitz, H., 1999, “Fully Equivalent Operational Models for Atmospheric Chemical Kinetics Within Global Chemistry-Transport Models,” J. Geophys. Res.

[CrossRef], 104 (D23), pp. 30417–30426.

Maas, U., and Pope, S. B., 1992, “Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space,” Combust. Flame

[CrossRef], 88 , pp. 239–264.

Nafe, J., and Mass, U., 2003, “Hierarchical Generation of IDLMs of Higher Hydrocarbons,” Combust. Flame, 135 , pp. 17–26.

Bender, R., Blasenbrey, T., and Maas, U., 2000, “Coupling of Detailed and IDLM-reduced chemistry With turbulent mixing,” Proc. Combust. Inst. , 28 (1), pp. 101–106

Blasenbrey, T., and Maas, U., 2000, “IDLMs of Higher Hydrocarbons and the Hierarchy of Chemical Kinetics,” Proc. Combust. Inst., 28 (2), pp. 1623–1630

Yan, X., and Maas, U., 2000, “Intrinsic Low-Dimensional Manifolds of Heterogeneous Combustion Processes,” Proc. Combust. Inst., 28 (2), pp. 1615–1621.

Raman, V., Fox, R., Harvey, A., and West, D., 2001, “CFD Analysis of Premixed Methane Chlorination Reactors With Detailed Chemistry,” Ind. Eng. Chem. Res., 40 (23), pp. 5170–5176.

Raman, V., Fox, R., and Harvey, A., 2004, “Hybrid Finite-Volume/ Transported PDF Simulations of a Partially Premixed Methane-Air Flame,” Combust. Flame, 136 (3), pp. 327–350.

Xu, J., and Pope, S. B., 2000, “PDF Calculations of Turbulent Nonpremixed Flames With Local Extinction,” Combust. Flame

[CrossRef], 123 (3), pp. 281–307.

Saxena, V., and Pope, S. B., 1998, “PDF Calculations of Major and Minor Species in a Turbulent Piloted Jet Flame,” Sym. (Int.) Combust., [Proc.], 1 , pp. 1081–1086.

Saxena, V., and Pope, S. B., 1999, “PDF Simulations of Turbulent Combustion Incorporating Detailed Chemistry,” Combust. Flame, 117 (1–2), pp. 340–350.

Chen, J.-Y., 2004, “Analysis of In Situ Adapative Tabulation Performane for Combustion Chemistry and Improvement With a Modified Search Algorithm,” Combust. Sci. Technol., 176 (7), pp. 1153–1169.

Goldin, G., Madsen, J., Straub, D., Rogers, W., and Castleton, K., 2003, “Detailed Chemistry Simulations of a Trapped Vortex Generator,” "*Proceedings of the ASME Turbo-Expo, IGTI*", Atlanta, GA, 16–19 June, Vol. 1 , pp. 121–128.

Tang, Q., and Pope, S. B., 2002, “Implementation of Combustion Chemistry by In Situ Adaptive Tabulation of Rate-Controlled Constrained Equilibrium Manifolds,” Proc. Combust. Inst., 29 (1), pp. 1411–1417.

Sankaran, V., and Menon, S., 2000, “Structure of Premixed Turbulent Flames in the Thin-Reaction-Zones Regime,” Proc. Combust. Inst., 28 (1), pp. 203–209.

Shah, J., and Fox, R., 1999, “Computational Fluid Dynamics Simulation of Chemical Reactors: Application of In Situ Adaptive Tabulation to Methane Thermochlorination Chemistry,” Ind. Eng. Chem. Res., 38 (11), pp. 4200–4212.

Zhao, W., Montgomery, C., Cremer, M., Adams, B., Eklund, D., and Chen, J., 2003, “Implementation of Reduced Mechanisms With ISAT into CFD Simulations of Full-Scale Combustion Systems,” "*Proceedings Energy Conversion and Resources—2003*", Washington, D.C., 15–29 Nov., pp. 27–32.

Pope, S. B., 1985, “PDF Methods for Turbulent Reactive Flows,” Prog. Energy Combust. Sci.

[CrossRef], 11 , pp. 119–192.

Mazumder, S., 2005, “Adaptation of the In Situ Adaptive Tabulation (ISAT) Procedure for Efficient Computation of Surface Reactions,” Comput. Chem. Eng., 30 (1), pp. 115–124.

Mathur, S., and Murthy, J. Y., 1997, “A Pressure Based Method for Unstructured Meshes,” Numer. Heat Transfer, Part B, 31 (2), pp. 195–216.

Ferziger, J., and Peric, M., 1999, "*Computational Methods for Fluid Dynamics*", 2nd ed, Springer, New York.

Patankar, S. V., 1980, "*Numerical Heat Transfer and Fluid Flow*", Hemisphere, Washington, D.C.

Van Doormal, J., and Raithby, G., 1984, “Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Numer. Heat Transfer, 7 , pp. 147–163.

Rhie, C. M., and Chow, W. L., 1983, “A Numerical Study of the Turbulent Flow Past an Isolated Airfoil With Trailing Edge Separation,” AIAA J., 21 , pp. 1525–1532.

Miller, T. F., and Schmidt, F. W., 1988, “Use of a Pressure Weighted Interpolation Method for the Solution of Incompressible Navier-Stokes Equations With Non-Staggered Grid System,” Numer. Heat Transfer, 14 , pp. 213–233.

Deutschmann, O., Behrendt, F., and Warnatz, J., 1994, “Modeling and Simulation of Heterogeneous Oxidation of Methane on a Platinum Foil,” Catal. Today, 21 , pp. 461–471.

Oliveira, A. A. M, and Kaviany, M., 2001, “Nonequilibrium in the Transport of Heat and Reactants in Combustion in Porous Media,” Prog. Energy Combust. Sci., 27 , pp. 523–545.

Liu, B. J. D., and Pope, S. B., 2005, “The Performance of In Situ Adaptive Tabulation in Computations of Turbulent Flames,” Combust. Theory Modell., 9 (4), pp. 549–568.