Rakow, J. F., and Waas, A. M., 2005, “Thermal Buckling of Metal Foam Sandwich Panels for Convective Thermal Protection Systems,” J. Spacecr. Rockets, 42 (5), pp. 832–844.

Weber, R. M., Lage, J. L., Price, D. C., and Weinert, A. K., 1996, “Numerical Study of a Low Permeability Microporous Heat Sink for Cooling Phased-Array Radar Systems,” Int. J. Heat Mass Transfer

[CrossRef], 39 , pp. 3633–3647.

Price, D. C., Antohe, B. V., Lage, J. L., and Weber, R. M., 1996, “Numerical Characterization of MicroHeat Exchanges using Experimentally Tested Porous Aluminum Layers,” Int. J. Heat Fluid Flow

[CrossRef], 19 , pp. 594–603.

Porneala, D. C., Lage, J. L., Narasimhan, A., and Price, D. C., 2004, “Experimental Study of Forced Convection through Microporous Enhanced Heat Sinks: Enhanced Heat Sinks for Cooling Airborne Microwave Phased-Array Radar Antenas,” "*Emerging Technologies and Techniques in Porous Media*", Vol. 28 , Kluwer, Dordrecht, The Netherlands, pp. 433–452.

Pavel, B. I., and Mohamad, A. A., 2004, “Experimental Investigation of the Potential of Metallic Porous Insert in Enhancing Forced Convective Heat Transfer,” ASME J. Heat Transfer

[CrossRef], 126 , pp. 540–545.

Pavel, B. I., and Mohamad, A. A., 2004, “An Experimental and Numerical Study on Heat Transfer Enhancement for Heat Exchangers Fitted With Porous Media,” Int. J. Heat Mass Transfer

[CrossRef], 47 , pp. 4939–4952.

Mohamad, A. A., 2003, “Heat Transfer Enhancements in Heat Exchangers Fitted With Porous Media, Part i: Constant Wall Temperature,” J. Therm. Sci., 42 , pp. 385–395.

Mohamad, A. A., 2003, “Porous Media Utilizations for Heat Transfer Enhancements,” Proceedings of the NATO Advanced Study Institute on Porous Media , Neptum-Olimp, Romania, June 9–20, pages 358–367.

Poulikakos, D., Boomsma, K., and Zwick, F., 2003, “Metal Foams as Compact High Performance Heat Exchangers,” Mech. Mater.

[CrossRef], 35 , pp. 1161–1176.

Boomsma, K., and Poulikakos, D., 2002, “The Effects of Compression on Pore Size Variation on the Liquid Flow Characteristics in Metal Foams,” ASME J. Fluids Eng.

[CrossRef], 124 , pp. 263–272.

Poulikakos, D., Boomsma, K., and Ventikos, Y., 2003, “Simulations of Flow through Open Cell Metal Foams Using an Idealized Periodic Cell Structure,” Int. J. Heat Fluid Flow

[CrossRef], 24 , pp. 825–834.

Stone, H. A., Lu, T. J., and Ashby, M. F., 1998, “Heat Transfer in Open-Cell Metal Foams,” Acta Mater.

[CrossRef], 46 (10), pp. 3619–3635.

Bastawros, A. F., and Evans, A. G., 1997, “Characterisation of Open-Cell Aluminum Alloy-Foams as Heat Sinks for High Power Electronic Devices,” Proceedings of the Symposium on the Application of Heat Transfer in Microelectronics Packaging IMECE , Dallas, TX.

Calmidi, V. V., and Mahajan, R. L., 1999, “Forced Convection in High Porosity Metal Foams,” ASME J. Heat Transfer

[CrossRef], 122 , pp. 557–565.

Calmidi, V. V., Bhattacharya, A., and Mahajan, R. L., 2002, “Thermophysical Properties of High Porosity Metal Foams,” Int. J. Heat Mass Transfer

[CrossRef], 45 , pp. 1017–1031.

Incropera, F. P., and DeWitt, D. P., 2002, "*Fundamentals of Heat and Mass Transfer*", 5th ed., J Wiley, New York.

Chandrupatla, T., and Belegundu, A., 1997, "*Introduction of Finite Elements in Engineering*", 2nd ed., Prentice–Hall, Upper Saddle River, NJ.

Vafai, K., and Kim, S. J., 1989, “Forced Convection in a Channel Filled with a Porous Medium: An Exact Solution,” ASME J. Heat Transfer, 111 , pp. 1103–1106.

White, F. M., 1991, "*Viscous Fluid Flow*", 2nd ed., McGraw–Hill, New York.

Price, D. C., Antohe, B. V., Lage, J. L., and Weber, R. M., 1997, “Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminum Porous Matrices,” ASME J. Fluids Eng., 119 , pp. 404–412.

Nield, D. A., Lage, J. L., Narasimhan, A., and Porneala, D. C., 2001, “Experimental Verification of Two New Theories Predicting Temperature-Dependent Viscosity Effects on the Forced Convection in a Porous Channel,” ASME J. Fluids Eng.

[CrossRef], 123 , pp. 948–951.