Peskin, C. S., 1972, “Flow Patterns Around Heart Valves: A Numerical Method,” J. Comput. Phys.

[CrossRef], 10 , pp. 252–271.

Peskin, C. S., 2002, “The Immersed Boundary Method,” Acta Numerica, 11 , pp. 479–517.

Udaykumar, H. S., Mittal, R., and Rampunggoon, P., 2002, “Interface Tracking Finite Volume Method for Complex Solid-Fluid Interactions on Fixed Meshes,” Commun. Numer. Methods Eng.

[CrossRef], 18 , pp. 89–97.

Marella, S., Krishnan, S., Liu, H., and Udaykumar, H. S., 2005, “Sharp Interface Cartesian Grid Method I: An Easily Implemented Technique for 3D Moving Boundary Computations,” J. Comput. Phys.

[CrossRef], 210 , pp. 1–31.

Liu, H., Krishnan, S., Marella, S., and Udaykumar, H. S., 2005, “Sharp Interface Cartesian Grid Method II: A Technique for Simulating Droplet Impact on Surfaces of Arbitrary Shape,” J. Comput. Phys.

[CrossRef], 210 , pp. 32–54.

Yang, Y., and Udaykumar, H. S., 2005, “Sharp Interface Cartesian Grid Method III: Solidification of Pure Materials and Binary Solutions,” J. Comput. Phys.

[CrossRef], 210 , pp. 55–74.

Lee, L., Li, Z., and LeVeque, R. J., 2003, “An Immersed Interface Method for Incompressible Navier-Stokes Equations,” SIAM J. Sci. Comput. (USA)

[CrossRef], 25 (3), pp. 832–856.

Barozzi, G. S., Bussi, C., and Corticelli, M. A., 2004, “A Fast Cartesian Scheme for Unsteady Heat Diffusion on Irregular Domains,” Numer. Heat Transfer, Part B

[CrossRef], 46 (1), pp. 59–77.

Fogelson, A. L., and Keener, J. P., 2001, “Immersed Interface Methods For Neumann and Related Problems in Two and Three Dimensions,” SIAM J. Sci. Comput. (USA)

[CrossRef], 22 (5), pp. 1630–1654.

Kim, J., Kim, D., and Choi, H., 2001, “An Immersed-Boundary Finite-Volume Method For Simulations Of Flow In Complex Geometries,” J. Comput. Phys.

[CrossRef], 171 , pp. 132–150.

Zhang, L., Gerstenberger, A., Wang, X., and Liu, W. K., 2004, “Immersed Finite Element Method,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 193 , pp. 2051–2067.

Kim, J., and Choi, H., 2004, “An Immersed-Boundary Finite-Volume Method for Simulations of Heat Transfer in Complex Geometries,” KSME Int. J., 18 (6), pp. 1026–1035.

Pacheco, J. R., Pacheco-Vega, A., Rodić, T., and Peck, R. E., 2005, “Numerical Simulations of Heat Transfer and Fluid Flow Problems Using an Immersed-Boundary Finite-Volume Method on Nonstaggered Grids,” Numer. Heat Transfer, Part B, 48 , pp. 1–24.

Fadlun, E. A., Verzicco, R., Orlandi, P., and Mohd-Yusof, J., 2000, “Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations,” J. Comput. Phys.

[CrossRef], 161 , pp. 35–60.

Mittal, R., and Iaccarino, G., 2005, “Immersed Boundary Methods,” Annu. Rev. Fluid Mech.

[CrossRef], 37 , pp. 239–261.

Tyagi, M., and Acharya, S., 2005, “Large Eddy Simulation of Turbulent Flows in Complex and Moving Rigid Geometries Using the Immersed Boundary Method,” Int. J. Numer. Methods Fluids

[CrossRef], 48 , pp. 691–722.

Deuflhard, P., and Hochmuth, R., 2004, “Multiscale Analysis of Thermoregulation in the Human Microvascular System,” Math. Methods Appl. Sci.

[CrossRef], 27 , pp. 971–989.

Oyanader, M. A., Arce, P., and Dzurik, A., 2003, “Avoiding Pitfalls in Electrokinetic Remediation: Robust Design and Operation Criteria Based on First Principles For Maximizing Performance in a Rectangular Geometry,” Electrophoresis

[CrossRef], 24 (19–20), pp. 3457–3466.

DeLima-Silva, W., and Wrobel, L. C., 1995, “A Front-Tracking BEM Formulation for One-Phase Solidification/Melting Problems,” Eng. Anal. Boundary Elem.

[CrossRef], 16 , pp. 171–182.

Amaziane, B., and Pankratov, L., 2006, “Homogenization Of A Reaction-Diffusion Equation With Robin Interface Conditions,” Appl. Math. Lett.

[CrossRef], 19 (11), pp. 1175–1179.

Sparrow, E. M., and Gregg, J. L., 1958, “Similar Solutions for Free Convection From a Non-Isothermal Vertical Plate,” ASME J. Heat Transfer, 80 , pp. 379–386.

Leonard, B. P., 1979, “A Stable And Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 19 , pp. 59–98.

Zang, Y., Street, R. L., and Koseff, J. F., 1994, “A Non-Staggered Grid, Fractional Step Method for Time Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates,” J. Comput. Phys.

[CrossRef], 114 , pp. 18–33.

Pacheco, J. R., 1999, “On the Numerical Solution of Film and Jet Flows,” Ph.D thesis, Department Mechanical and Aerospace Engineering, Arizona State University, Tempe.

Pacheco, J. R., and Peck, R. E., 2000, “Non-Staggered Grid Boundary-Fitted Coordinate Method for Free Surface Flows,” Numer. Heat Transfer, Part B

[CrossRef], 37 , pp. 267–291.

Pacheco, J. R., 2001, “The Solution of Viscous Incompressible Jet Flows Using Non-Staggered Boundary Fitted Coordinate Methods,” Int. J. Numer. Methods Fluids

[CrossRef], 35 , pp. 71–91.

Mohd-Yusof, J., 1997, “Combined Immersed-Boundary/B-Spline Methods For Simulations of Flows in Complex Geometries,” CTR Annual Research Briefs, NASA Ames/Stanford University, Stanford, CA, pp. 317–327.

Orlanski, I., 1976, “A Simple Boundary Condition For Unbounded Hyperbolic Flows,” J. Comput. Phys.

[CrossRef], 21 , pp. 251–269.

Eckert, E. R. G., and Soehngen, E., 1952, “Distribution of Heat-Transfer Coefficients Around Circular Cylinders in Crossflow At Reynolds Numbers From 20 to 500,” Trans. ASME, 75 , pp. 343–347.

Pan, D., 2006, “An Immersed Boundary Method on Unstructured Cartesian Meshes for Incompressible Flows With Heat Transfer,” Numer. Heat Transfer, Part B

[CrossRef], 49 , pp. 277–297.

Lima E Silva, A. L. F., Silveira-Neto, A., and Damasceno, J. J. R., 2003, “Numerical Simulation of Two-Dimensional Flows over a Circular Cylinder Using the Immersed Boundary Method,” J. Comput. Phys.

[CrossRef], 189 , pp. 351–370.

Strykowski, P. J., and Sreenivasan, K. R., 1990, “On the Formation and Suppression of Vortex Shedding at Low Reynolds Numbers,” J. Fluid Mech.

[CrossRef], 218 , pp. 71–107.

Moukalled, F., and Darwish, M., 1997, “New Bounded Skew Central Difference Scheme, Part II: Application to Natural Convection in an Eccentric Annulus,” Numer. Heat Transfer, Part B

[CrossRef], 31 , pp. 111–133.

Sadat, H., and Couturier, S., 2000, “Performance and Accuracy of a Meshless Method for Laminar Natural Convection,” Numer. Heat Transfer, Part B

[CrossRef], 37 , pp. 455–467.

Demirdžić, I., Lilek, Ž., and Perić, M., 1992, “Fluid Flow and Heat Transfer Test Problems for Nonorthogonal Grids: Bench-Mark Solutions,” Int. J. Numer. Methods Fluids

[CrossRef], 15 , pp. 329–354.

Carslaw, H. S., and Jaeger, J. C., 1986, "*Conduction of Heat in Solids*", 2nd ed., Oxford University Press, Oxford.

Özisik, M. N., 1989, "*Boundary Value Problems of Heat Conduction*", Dover, Mineola, NY.

Johnson, T. A., and Patel, V. C., 1999, “Flow Past a Sphere up to Reynolds Number of 300,” J. Fluid Mech.

[CrossRef], 378 , pp. 19–70.

Magarvey, R. H., and Bishop, R. L., 1961, “Transition Ranges for Three-Dimensional Wakes,” Can. J. Phys., 39 , pp. 1418–1422.

Feng, Z.-G., and Michaelides, E. E., 2000, “A Numerical Study on the Transient Heat Transfer From a Sphere at High Reynolds and Peclet Numbers,” Int. J. Heat Mass Transfer

[CrossRef], 43 , pp. 219–229.

Hunt, J. C. R., Wray, A. A., and Moin, P., 1988, “Eddies, Stream, and Convergence Zones in Turbulent Flows,” "*Proceedings of the 1988 CTR Summer Program*", NASA Ames/Stanford University, Stanford, CA, pp. 193–208.

Constantinescu, S. G., and Squires, K. D., 2004, “Numerical Investigation of the Flow Over a Sphere in the Subcritical and Supercritical Regimes,” Phys. Fluids

[CrossRef], 16 (5), pp. 1449–1467.

Jeong, J., and Hussain, F., 1995, “On the Identification of a Vortex,” J. Fluid Mech.

[CrossRef], 285 , pp. 69–94.