Camarda, C. J., Rummler, D. R., and Peterson, G. P., 1991, “Multi Heat Pipe Panels,” Report No. LAR-14150, NASA Technical Briefs.

Badran, B., Albayyari, J. M., Gerner, F. M., Ramadas, P., Henderson, H. T., and Baker, K., 1993, “Liquid-Metal Micro Heat Pipes,” "*Heat Pipes and Capillary Pumped Loops*", Faghri, A., Juhasz, A.J., and Mahefkey, T., ASME, New York, HTD 236 , pp. 71–85.

Cotter, T. P., 1984, “Principles and Prospects of Micro Heat Pipes,” "*Proc. of the 5th Int. Heat Pipe Conference*", Tsukuba, Japan, pp. 328–332.

DasGupta, S., Schonberg, J. A., Kim, I. Y., and Wayner, P. C., 1993, “Use of Augmented Yong–Laplace Equation to Model Equilibrium and Evaporation Extended Menisci,” J. Colloid Interface Sci.

[CrossRef], 157 , pp. 332–342.

DasGupta, S., Schonberg, J. A., and Wayner, P. C., 1993, “Investigation of an Evaporative Extended Meniscus Based on the Augmented Yong–Laplace Equation,” ASME J. Heat Transfer, 115 , pp. 201–208.

Suman, B., and Hoda, N., 2005, “Effect of Variations in Thermophysical Properties and Design Parameters on the Performance of a V-Shaped Micro Grooved Heat Pipe,” Int. J. Heat Mass Transfer

[CrossRef], 48 (10), pp. 2090–2101.

Suman, B., 2007, “Modeling, Experiment and Fabrication of Micro Heat Pipes: An Update,” Appl. Mech. Rev.

[CrossRef], 60 , pp. 107–119.

Wu, D., and Peterson, G. P., 1991, “Investigation of the Transient Characteristics of a Micro Heat Pipe,” J. Thermophys. Heat Transfer, 5 , pp. 129–134.

Wu, D., Peterson, G. P. and Chang, W. S., 1991, “Transient Experimental Investigation of Micro Heat Pipes,” J. Thermophys. Heat Transfer, 5 , pp. 539–545.

Peterson, G. P., and Mallik, A. K., 1995, “Transient Response Characteristics of Vapor Deposited Micro Heat Pipe,” ASME J. Electron. Packag.

[CrossRef], 117 (1), pp. 82–87.

Chang, W. S., and Colwell, G. T., 1985, “Mathematical Modeling of the Transient Operation Characteristics of a Low Temperature Heat Pipe,” Numer. Heat Transfer

[CrossRef], 8 , pp. 169–186.

Colwell, G. T., and Chang, W. S., 1983, “Measurement of Transient Behavior of a Capillary Structure Under the Heavy Thermal Loading,” Int. J. Heat Mass Transfer

[CrossRef], 27 , pp. 541–551.

Faghri, A., and Chen, M. M., 1989, “A Numerical Analysis of the Effects of Conjugate Heat Transfer, Vapor Compressibility, and Viscous Dissipation in Heat Pipe,” Numer. Heat Transfer, Part A

[CrossRef], 16 , pp. 389–405.

Turnier, J. M., and El-Genk, M. S., 1994, “A Heat Pipe Transient Analysis Model,” Int. J. Heat Mass Transfer

[CrossRef], 37 , pp. 753–762.

Wang, Y., and Vafai, K., 2000, “An Experimental Investigation of the Transient Characteristics on a Flat Plate Heat Pipe During Startup and Shutdown Operations,” ASME J. Heat Transfer

[CrossRef], 122 , p. 525.

Chang, W. S., 1981, “Heat Pipe Start Up From the Supercritical State,” Ph.D. desertion, School of Mechanical Engineering, Georgia Institute of Technology.

Zhu, N., and Vafai, K., 1998, “Analytical Modeling of Startup Characteristics of Asymmetric Flat-Plate and Disc-Shaped Heat Pipes,” Int. J. Heat Mass Transfer

[CrossRef], 41 (17), pp. 2619–2637.

Suman, B., De, S., and DasGupta, S., 2005, “Transient Modeling of a Micro Groove Heat Pipe,” Int. J. Heat Mass Transfer

[CrossRef], 48 (8), pp. 1633–1646.

Ravikumar, M., and DasGupta, S., 1997, “Modeling of Evaporation From V-Shaped Microgrooves,” Chem. Eng. Commun.

[CrossRef], 160 , pp. 225–248.

Peterson, G. P., and Ma, H. B., 1996, “Theoretical Analysis of the Maximum Heat Transport in Triangular Grooves: A Study of Idealized Micro Heat Pipe,” ASME J. Heat Transfer, 118 , pp. 731–739.

Catton, I., and Stores, G. R., 2002, “A Semi-Analytical Model to Predict the Capillary Limit of Heated Inclined Triangular Capillary Grooves,” ASME J. Heat Transfer

[CrossRef]124 , pp. 162–168.

Suh, J. S., Greif, R., and Grigoropouls, C., 2001, “Friction in Micro-Channel Flows of a Liquid and Vapor in Trapezoidal and Sinusoidal Grooves,” Int. J. Heat Mass Transfer

[CrossRef], 44 , pp. 3103–3109.

Blangetti, F., and Naushahi, M. K., 1980, “Influence of Mass Transfer on the Momentum Transfer in Condensation and Evaporation Phenomena,” Int. J. Heat Mass Transfer

[CrossRef], 23 , pp. 1694–1695.

Suman, B., De, S., and DasGupta, S., 2005, “A Model of the Capillary Limit of a Micro Grooved Heat Pipe and the Prediction of Dry Out Length,” Int. J. Heat Fluid Flow

[CrossRef], 26 (3), pp. 495–505.

Ha, J. M., and Peterson, G. P., 1998, “Analytical Prediction of Axial Dry-Out Point for Evaporating Liquids in Axial Microgrooves,” ASME J. Heat Transfer, 120 , pp. 452–457.

Anand, S., De, S., and DasGupta, S., 2002, “Experimental and Theoretical Study of Axial Dry-Out Point for Evaporative From V-Shaped Microgrooves,” Int. J. Heat Mass Transfer

[CrossRef], 45 , pp. 1535–1543.

Incropera, F. P., and DeWitt, D. P., 2000, "*Fundamentals of Heat and Mass Transfer*", 4th ed., Wiley, New York.