McMurray, D. C., Myers, P. S., and Uyehara, O. A., 1966, “Influence of Impinging Jet Variables on Local Heat Transfer Coefficients Along a Flat Surface With Constant Heat Flux,” "*Proceedings of the Third International Heat Transfer Conference*", Chicago, IL, Vol. 2 , pp. 292–299.

Metzger, D. E., Cammings, K. N., and Ruby, W. A., 1974, “Effects of Prandtl Number on Heat Transfer Characteristics of Impinging Liquid Jets,” "*Proceedings of the Fifth International Heat Transfer Conference*", Tokyo, Vol. 2 , pp. 20–24.

Hung, Y. H., and Lin, Z. H., 1994, “Effect of Confinement Plate on Heat Transfer Characteristics of a Circular Jet Impingement,” "*Proceedings of the ASME Fundamentals of Heat Transfer in Forced Convection*", HTD, Vol. 285 , pp. 101–109.

Webb, B. W., and Ma, C. F., 1995, “Single-Phase Liquid Jet Impingement Heat Transfer,” Adv. Heat Transfer, 26 (1), pp. 105–117.

Garimella, S. V., and Nenaydykh, B., 1996, “Nozzle-Geometry Effects in Liquid Jet Impingement Heat Transfer,” Int. J. Heat Mass Transfer

[CrossRef], 39 (14), pp. 2915–2923.

Fitzgerald, J. A., and Garimella, S. V., 1998, “A Study of the Flow Field of a Confined and Submerged Impinging Jet,” Int. J. Heat Mass Transfer

[CrossRef], 41 (8–9), pp. 1025–1034.

Li, D. Y., Guo, Z. Y., and Ma, C. F., 1997, “Relationship Between the Recovery Factor and the Viscous Dissipation in a Confined, Impinging, Circular Jet of High-Prandtl Number Liquid,” Int. J. Heat Fluid Flow, 18 (6), pp. 585–590.

Rahman, M. M., Dontaraju, P., and Ponnappan, R., 2002, “Confined Jet Impingement Thermal Management Using Liquid Ammonia as the Working Fluid,” "*Proceedings of the ASME International Mechanical Engineering Congress and Exposition*", New Orleans, LA, pp. 1–10.

Li, C. Y., and Garimella, S. V., 2001, “Prandtl-Number Effects and Generalized Correlations for Confined and Submerged Jet Impingement,” Int. J. Heat Mass Transfer

[CrossRef], 44 (18), pp. 3471–3480.

Ichimiya, K., and Yamada, Y., 2003, “Three-Dimensional Heat Transfer of a Confined Circular Impinging Jet With Buoyancy Effects,” ASME J. Heat Transfer

[CrossRef], 125 (2), pp. 250–256.

Dano, B., Liburdy, J. A., and Kanokjaruvijit, K., 2005, “Flow Characteristics and Heat Transfer Performances of a Semi-Confined Impinging Array of Jets: Effect of Nozzle Geometry,” Int. J. Heat Mass Transfer

[CrossRef], 48 (3–4), pp. 691–701.

Carper, H. J., and Deffenbaugh, D. M., 1978, “Heat Transfer From a Rotating Disk With Liquid Jet Impingement,” "*Sixth International Heat Transfer Conference*", Toronto, ON, Hemisphere Public, Washington, DC, Vol. 4 , pp. 113–118.

Carper, H. J., Saavedra, J. J., and Suwanprateep, T., 1986, “Liquid Jet Impingement Cooling of a Rotating Disk,” ASME J. Heat Transfer, 108 (3), pp. 540–546.

Metzger, D. E., Bunker, R. S., and Bosh, G., 1991, “Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement,” ASME J. Turbomach.

[CrossRef], 113 (1), pp. 52–59.

Thomas, S., Faghri, A., and Hankey, W. L., 1991, “Experimental Analysis and Flow Visualization of a Thin Liquid Film on a Stationary and Rotating Disk,” ASME J. Fluids Eng.

[CrossRef], 113 (1), pp. 73–80.

Rahman, M. M., and Faghri, A., 1992, “Numerical Simulation of Fluid Flow and Heat Transfer in a Thin Liquid Film Over a Rotating Disk,” Int. J. Heat Mass Transfer

[CrossRef], 35 (6), pp. 1441–1453.

Rahman, M. M., and Faghri, A., 1992, “Analysis of Heating and Evaporation From a Liquid Film Adjacent to a Horizontal Rotating Disk,” Int. J. Heat Mass Transfer

[CrossRef], 35 (10), pp. 2655–2664.

Faghri, A., Thomas, S., and Rahman, M. M., 1993, “Conjugate Heat Transfer From a Heated Disk to a Thin Liquid Film Formed by a Controlled Impinging Jet,” ASME J. Heat Transfer

[CrossRef], 115 (1), pp. 116–123.

Hung, Y. H., and Shieh, Y. R., 2001, “Convective Heat Transfer From a Rotating Ceramic-Based Multichip Disk With Round Jet Impingement,” "*Proceedings of the National Heat Transfer Conference*", Anaheim, CA, Vol. 1 , pp. 97–103.

Ozar, B., Cetegen, B. M., and Faghri, A., 2004, “Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk,” ASME J. Heat Transfer

[CrossRef], 126 (2), pp. 184–192.

Rice, J., Faghri, A., and Cetegen, B. M., 2005, “Analysis of a Free Surface Film From a Controlled Liquid Impinging Jet Over a Rotating Disk Including Conjugate Effects, With and Without Evaporation,” Int. J. Heat Mass Transfer

[CrossRef], 48 (25–26), pp. 5192–5204.

Burmeister, L. C., 1993, "*Convective Heat Transfer*", 2nd ed., Wiley, New York, pp. 581–590.

White, F. M., 1999, "*Fluid Mechanics*", 4th ed., McGraw-Hill, New York, pp. 234–236.

Popiel, C. O., and Boguslawski, L., 1986, “Local Heat Transfer From a Rotating Disk in an Impinging Round Jet,” ASME J. Heat Transfer, 108 (2), pp. 357–364.

Vanyo, J. P., 1993, "*Rotating Fluids in Engineering and Science*", Butterworth-Heinemann, MA, Chap. 14, pp. 233–264.

Özisik, M. N., 1993, "*Heat Conduction*", 2nd ed., Wiley, New York, pp. 657–660.

Bejan, A., 1995, "*Convection Heat Transfer*", 2nd ed., Wiley, New York, pp. 595–602.

Bula, A. J., 1999, “Numerical Modeling of Conjugate Heat Transfer During Free Liquid Jet Impingement,” Ph.D. thesis, University of South Florida, Tampa, FL.

Fletcher, C. A. J., 1984, "*Computational Galerkin Methods*", Springer, New York, pp. 27 and 205.

Liu, X., Lienhard, J. H., and Lombara, J. S., 1991, “Convective Heat Transfer by Impingement of Circular Liquid Jets,” ASME J. Heat Transfer

[CrossRef], 113 (3), pp. 571–582.

Ma, C. F., Zheng, Q., Lee, S. C., and Gomi, T., 1996, “Impingement Heat Transfer and Recovery Effect With Submerged Jets of Large Prandtl Number Liquid 2. Initially Laminar Confined Slot Jets,” Int. J. Heat Mass Transfer

[CrossRef], 40 (6), pp. 1491–1500.

Brodersen, S., Metzger, D. E., and Fernando, H. J. S., 1996, “Flows Generated by the Impingement of a Jet on a Rotating Surface, Part 1: Basic Flow Patterns,” ASME J. Fluids Eng.

[CrossRef], 118 (1), pp. 61–67.

Lachefski, H., Cziesla, T., Biswas, G., and Mitra, K., 1996, “Numerical Investigation of Heat Transfer by Rows of Rectangular Impinging Jets,” Numer. Heat Transfer, Part A, 30 (1), pp. 87–101.