Peierls, R. E., 1955, "*Quantum Theory of Solid*", Oxford University Press, London.

Klemens, P. G., 1958, “Thermal Conductivity and Lattice Vibrational Modes,” "*Solid State Physics*", F.Seitz and D.Thurnbull, eds., Academic, New York, pp. 1–98.

Klemens, P. G., 1969, “Theory of Thermal Conductivity of Solids,” "*Thermal Conductivity*", R.P.Tye, ed., Academic, London, pp. 1–68.

Holland, M. G., 1963, “Analysis of Lattice Thermal Conductivity,” Phys. Rev., 132 (6), pp. 2461–2471.

[CrossRef]Ziman, J., 1960, "*Electrons and Phonons: The Theory of Transport Phenomena in Solids*", Oxford University Press, Oxford, UK.

Rowlette, J., and Goodson, K., 2008, “Fully Coupled Nonequilibrium Electron–Phonon Transport in Nanometer-Scale Silicon FETs,” IEEE Trans. Electron Devices, 55 (1), pp. 220–232.

[CrossRef]Escobar, R., and Amon, C. H., 2007, “Influence of Phonon Dispersion on Transient Thermal Response of Silicon-on-Insulator Transistors Under Self-Heating Conditions,” ASME J. Heat Transfer, 129 (7), pp. 790–797.

[CrossRef]Mazumder, S., 2001, “Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization,” ASME J. Heat Transfer, 123 (4), pp. 749–759.

[CrossRef]Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2005, “Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors,” ASME J. Heat Transfer, 127 (7), pp. 713–723.

[CrossRef]Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2004, “Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization,” ASME J. Heat Transfer, 126 (6), pp. 946–955.

[CrossRef]Kazan, M., Pereira, S., Coutinho, J., Correia, M. R., and Masri, P., 2008, “Role of Optical Phonon in Ge Thermal Conductivity,” Appl. Phys. Lett., 92 (21), p. 211903.

[CrossRef]Holland, M. G., 1964, “Phonon Scattering in Semiconductors From Thermal Conductivity Studies,” Phys. Rev., 134 (2A), pp. A471–A480.

[CrossRef]Chung, J. D., McGaughey, A. J. H., and Kaviany, M., 2004, “Role of Phonon Dispersion in Lattice Thermal Conductivity Modeling,” ASME J. Heat Transfer, 126 (3), pp. 376–380.

[CrossRef]Broido, D. A., Malorny, M., Birner, G., Mingo, N., and Stewart, D. A., 2007, “Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles,” Appl. Phys. Lett., 91 (23), p. 231922.

[CrossRef]Goicochea, J. V., Madrid, M., and Amon, C. H., 2010, “Thermal Properties for Bulk Silicon Based on the Determination of Relaxation Times Using Molecular Dynamics,” ASME J. Heat Transfer, 132 (1), p. 012401.

[CrossRef]Hamilton, R. A., and Parrott, J. E., 1969, “Variational Calculation of the Thermal Conductivity of Germanium,” Phys. Rev., 178 (3), pp. 1284–1292.

[CrossRef]Sood, K. C., and Roy, M. K., 1993, “Longitudinal Phonons and High-Temperature Heat Conduction in Germanium,” J. Phys.: Condens. Matter, 5 (3), pp. 301–312.

[CrossRef]Sinha, S., Schelling, P. K., Phillpot, S. R., and Goodson, K. E., 2005, “Scattering of G-Process Longitudinal Optical Phonons at Hotspots in Silicon,” J. Appl. Phys., 97 (2), p. 023702.

[CrossRef]Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2006, “Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics,” Heat Mass Transfer, 42 (6), pp. 478–491.

[CrossRef]Pop, E., Banerjee, K., Sverdrup, P., Dutton, R., and Goodson, K., 2001, “Localized Heating Effects and Scaling of Sub-0.18 Micron CMOS Devices,” IEEE Int. Electron Dev. Meet. , pp. 677–680.

Pop, E., Dutton, R. W., and Goodson, K. E., 2005, “Monte Carlo Simulation of Joule Heating in Bulk and Strained Silicon,” Appl. Phys. Lett., 86 (8), p. 082101.

[CrossRef]Pop, E., Sinha, S., and Goodson, K., 2006, “Heat Generation and Transport in Nanometer-Scale Transistors,” Proc. IEEE, 94 (8), pp. 1587–1601.

[CrossRef]Reissland, J. A., 1973, "*The Physics of Phonons*", Wiley-Interscience, New York.

McGaughey, A. J., and Kaviany, M., 2004, “Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation,” Phys. Rev. B, 69 (9), p. 094303.

[CrossRef]Ladd, A., Moran, B., and Hoover, W. G., 1986, “Lattice Thermal Conductivity: A Comparison of Molecular Dynamics and Anharmonic Lattice Dynamics,” Phys. Rev. B, 34 (8), pp. 5058–5064.

[CrossRef]Sun, L., and Murthy, J. Y., 2005, “Molecular Dynamics Simulation of Phonon Transport in EDIP Silicon,” ASME Paper No. HT2005-72200.

Henry, A. S., and Chen, G., 2008, “Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics,” J. Comput. Theor. Nanosci., 5 (2), pp. 141–152.

Turney, J. E., Landry, E. S., McGaughey, A. J. H., and Amon, C. H., 2009, “Predicting Phonon Properties and Thermal Conductivity From Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations,” Phys. Rev. B, 79 (6), p. 064301.

[CrossRef]Dove, M. T., 1993, "

*Introduction to Lattice Dynamics*", Cambridge University Press, New York.

[CrossRef]Pearson, E. M., Halicioglu, T., and Tiller, W. A., 1985, “Laplace-Transform Technique for Deriving Thermodynamics Equations From the Classical Microcanonical Ensemble,” Phys. Rev. A, 32 (5), pp. 3030–3039.

[CrossRef]Porter, L. J., Yip, S., Yamaguchi, M., Kaburaki, H., and Tang, M., 1997, “Empirical Bond-Order Potential Description of Thermodynamic Properties of Crystalline Silicon,” J. Appl. Phys., 81 (1), pp. 96–106.

[CrossRef]Tiwari, M. D., and Agrawal, B. K., 1971, “Analysis of the Lattice Thermal Conductivity of Germanium,” Phys. Rev. B, 4 (10), pp. 3527–3532.

[CrossRef]Volz, S. G., and Chen, G., 1999, “Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires,” Appl. Phys. Lett., 75 (14), pp. 2056–2058.

[CrossRef]Gomes, C., Madrid, M., Goicochea, J. V., and Amon, C. H., 2006, “In-Plane and Out-of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics,” ASME J. Heat Transfer, 128 (11), pp. 1114–1121.

[CrossRef]Lee, Y. H., Biswas, R., Soukoulis, C. M., Wang, C. Z., Chan, C. T., and Ho, K. M., 1991, “Molecular-Dynamics Simulation of Thermal Conductivity in Amorphous Silicon,” Phys. Rev. B, 43 (8), pp. 6573–6580.

[CrossRef]Volz, S. G., and Chen, G., 2000, “Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals,” Phys. Rev. B, 61 (4), pp. 2651–2656.

[CrossRef]Kremer, R. K., Graf, K., Cardona, M., Devyatykh, G. G., Gusev, A. V., Gibsin, A. M., Inyushkin, A. V., Taldenkov, A. N., and Pohl, H., 2004, “Thermal Conductivity of Isotopically Enriched 28Si: Revisited,” Solid State Commun., 131 (8), pp. 499–503.

[CrossRef]Murakawa, A., Ishii, H., and Kakimoto, K., 2004, “An Investigation of Thermal Conductivity of Silicon as a Function of Isotope Concentration by Molecular Dynamics,” J. Cryst. Growth, 267 (3–4), pp. 452–457.

[CrossRef]Carruthers, P., 1961, “Theory of Thermal Conductivity of Solids at Low Temperatures,” Rev. Mod. Phys., 33 (1), pp. 92–138.

[CrossRef]Goicochea, J. V., Madrid, M., and Amon, C. H., 2009, “Effects of Quantum Corrections and Isotope Scattering on Silicon Thermal Properties,” Thermal Investigations of ICs and Systems, THERMINIC , Leuven, Belgium, pp. 197–202.

Goicochea, J. V., 2008, “Hierarchical Modeling of Heat Transfer in Silicon-Based Electronic Devices,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.

Goicochea, J. V., and Michel, B., 2010, “Phonon Relaxation Times of Germanium Determined by Molecular Dynamics at 1000 K,” Semiconductor Thermal Measurement, Modeling and Management Symposium (SEMITHERM) , Santa Clara, CA.

Desai, P. D., 1986, “Thermodynamic Properties of Iron and Silicon,” J. Phys. Chem. Ref. Data, 15 (3), pp. 967–083.

Ho, C. Y., Powell, R. W., and Liley, P. E., 1974, “Thermal Conductivity of the Elements,” J. Phys. Chem. Ref. Data, 3 (1), pp. 1–796.

Escobar, R., Smith, B., and Amon, C. H., 2006, “Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronic Devices,” ASME J. Electron. Packag., 128 (2), pp. 115–124.

[CrossRef]Escobar, R. A., Ghai, S. S., Jhon, M. S., and Amon, C. H., 2006, “Multi-Length and Time Scale Thermal Transport Using the Lattice Boltzmann Method With Applications to Electronics Cooling,” Int. J. Heat Mass Transfer, 49 (1–2), pp. 97–107.

[CrossRef]Han, Y., and Klemens, P. G., 1993, “Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures,” Phys. Rev. B, 48 (9), pp. 6033–6042.

[CrossRef]Escobar, R. A., and Amon, C. H., 2008, “Thin Film Phonon Heat Conduction by the Dispersion Lattice Boltzmann Method,” ASME J. Heat Transfer, 130 (9), p. 092402.

[CrossRef]Succi, S., 2001, "*The Lattice Boltzmann Equation for Fluid Mechanics and Beyond*", Clarendon, Oxford, UK.

Qian, Y. H., d’Humieres, D., and Lallemand, P., 1992, “Lattice BGK for Navier-Stokes Equation,” Europhys. Lett., 17 (6), pp. 479–484.

[CrossRef]