Moore, J., Chase, J., Ranganathan, P., and Sharma, R., 2005, “Making Scheduling Cool: Temperature-Aware Workload Placement in Data Centers,” "*Proceedings of the Usenix Technical Conference*".

Sharma, R. K., Bash, C., Patel, C. D., Friedrich, R. J., and Chase, J. S., 2003, “Balance of Power: Dynamic Thermal Management for Internet Data Centers,” Technical Report No. HPL-2003-5.

Moore, J., Chase, J., Farkas, K., and Ranganathan, P., 2005, “Data Center Workload Monitoring, Analysis, and Emulation,” "*Proceedings of the Eighth Workshop on Computer Architecture Evaluation Using Commercial Workloads*".

Moore, J., Chase, J., and Ranganathan, P., 2006, “Weatherman: Automated, Online, and Predictive Thermal Mapping and Management for Data Centers,” "*Proceedings of the IEEE International Conference on Autonomic Computing (ICAC)*", pp. 155–164.

Tang, Q., Gupta, S., and Varsamopoulos, G., 2008, “Energy-Efficient Thermal-Aware Task Scheduling for Homogeneous High-Performance Computing Data Centers: A Cyber-Physical Approach,” IEEE Trans. Parallel Distrib. Syst., 19 (11), pp. 1458–1472.

[CrossRef]Moore, J., Chase, J., Ranganathan, P., and Sharma, R., 2005, “Making Scheduling Cool: Temperature-Aware Workload Placement in Data Centers,” "*Proceedings of the USENIX 2005 Annual Technical Conference*", pp. 61–75.

Nie, Q., and Joshi, Y., 2008, “Reduced Order Modeling and Experimental Validation of Steady Turbulent Convection in Connected Domains,” Int. J. Heat Mass Transfer, 51 (25–26), pp. 6063–6076.

[CrossRef]Rambo, J., and Joshi, Y., 2007, “Reduced-Order Modeling of Turbulent Forced Convection With Parametric Conditions,” Int. J. Heat Mass Transfer, 50 (3–4), pp. 539–551.

[CrossRef]Rolander, N., 2005, “An Approach for the Robust Design of Air Cooled Data Center Server Cabinets,” MS thesis, Georgia Institute of Technology, Atlanta, GA.

Holmes, P., Lumley, J. L., and Berkooz, G., 1996, "*Turbulence, Coherent Structures, Dynamical Systems and Symmetry*", Cambridge University Press, Cambridge, England.

Rambo, J., 2006, “Reduced-Order Modeling of Multiscale Turbulent Convection: Application to Data Center Thermal Management,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.

Alonso, D., Velazquez, A., and Vega, J. M., 2009, “Robust Reduced Order Modeling of Heat Transfer in a Back Step Flow,” Int. J. Heat Mass Transfer, 52 (5–6), pp. 1149–1157.

[CrossRef]Ilak, M., Rowley, C. W., and Rowley, C. W., 2008, “Modeling of Transitional Channel Flow Using Balanced Proper Orthogonal Decomposition,” Phys. Fluids, 20 (3), p. 034103.

[CrossRef]Bogner, T., 2008, “General Variational Model Reduction Applied to Incompressible Viscous Flows,” J. Fluid Mech., 617 , pp. 31–50.

[CrossRef]Ravindran, S. S., 2002, “Adaptive Reduced-Order Controllers for a Thermal Flow Using Proper Orthogonal Decomposition,” SIAM J. Sci. Comput., 23 (6), pp. 1924–1942.

[CrossRef]Park, H. M., and Cho, D. H., 1996, “The Use of the Karhunen-Loeve Decomposition for the Modeling of Distributed Parameter Systems,” Chem. Eng. Sci., 51 (1), pp. 81–98.

[CrossRef]Park, H. M., and Cho, D. H., 1996, “Low Dimensional Modeling of Flow Reactors,” Int. J. Heat Mass Transfer, 39 (16), pp. 3311–3323.

[CrossRef]Sirovich, L., and Park, H. M., 1990, “Turbulent Thermal Convection in a Finite Domain: Part I. Theory,” Phys. Fluids, 2 (9), pp. 1649–1657.

[CrossRef]Sirovich, L., and Park, H. M., 1990, “Turbulent Thermal Convection in a Finite Domain: Part II. Numerical Results,” Phys. Fluids, 2 (9), pp. 1659–1668.

[CrossRef]Tarman, I. H., and Sirovich, L., 1998, “Extensions of Karhunen-Loeve Based Approximations of Complicated Phenomena,” Comput. Methods Appl. Mech. Eng., 155 , pp. 359–368.

[CrossRef]Park, H. M., and Li, W. J., 2002, “Boundary Optimal Control of Natural Convection by Means of Mode Reduction,” ASME J. Dyn. Syst., Meas., Control, 124 , pp. 47–54.

[CrossRef]Ding, P., Wu, X. -H., He, Y. -L., and Tao, W. -Q., 2008, “A Fast and Efficient Method for Predicting Fluid Flow and Heat Transfer Problems,” ASME J. Heat Transfer, 130 (3), p. 032502.

[CrossRef]Hasan, N., and Sanghi, S., 2007, “Proper Orthogonal Decomposition and Low-Dimensional Modelling of Thermally Driven Two-Dimensional Flow in a Horizontal Rotating Cylinder,” J. Fluid Mech., 573 , pp. 265–295.

[CrossRef]Sempey, A., Inard, C., Ghiaus, C., and Allery, C., 2009, “Fast Simulation of Temperature Distribution in Air Conditioned Rooms by Using Proper Orthogonal Decomposition,” Build. Environ., 44 , pp. 280–289.

[CrossRef]Ly, H. V., and Tran, H. T., 2001, “Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition,” Math. Comput. Model., 33 , pp. 223–236.

[CrossRef]Rolander, N., Rambo, J., Joshi, Y., Mistree, F., and Allen, J. K., 2006, “Robust Design of Turbulent Convective Systems Using the Proper Orthogonal Decomposition,” ASME J. Mech. Des., 128 , pp. 844–855.

[CrossRef]Nie, Q., and Joshi, Y., 2008, “Multiscale Thermal Modeling Methodology for Thermoelectrically Cooled Electronic Cabinets,” Numer. Heat Transfer, Part A, 53 (3), pp. 225–248.

[CrossRef]Fried, E., and Idelchik, I. E., 1989, "*Flow Resistance: A Design Guide for Engineers*", Hemisphere, New York.

ASHRAE, 2004, “Thermal Guidelines for Data Processing Environments,” American Society of Heating, Refrigeration, and Air-Conditioning Engineers.