Cho, Y.I., ed., 1992, "*Bioengineering Heat Transfer*" (Advances in Heat Transfer Series No. 22), Academic, London.

Xu, F., Lu, T. J., Seffen, K. A., and Ng, E. Y. K., 2009, “Mathematical Modeling of Skin Bioheat Transfer,” Appl. Mech. Rev., 62 , p. 050801.

[CrossRef]Vadasz, P., ed., 2008, "

*Emerging Topics in Heat and Mass Transfer in Porous Media: From Bioengineering and Microelectronics to Nanotechnology*" (Theory and Applications of Transport in Porous Media Series No. 22), Springer-Verlag, Berlin.

[CrossRef]Nakayama, A., and Kuwahara, F., 2008, “A General Bioheat Transfer Model Based on the Theory of Porous Media,” Int. J. Heat Mass Transfer, 51 , pp. 3190–3199.

[CrossRef]Khaled, A. R. A., and Vafai, K., 2003, “The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues,” Int. J. Heat Mass Transfer, 46 , pp. 4989–5003.

[CrossRef]Wang, L. Q., Xu, M. T., and Wei, X. H., 2008, “Multiscale Theorems,” Adv. Chem. Eng., 34 , pp. 175–468.

[CrossRef]Auriault, J. L., 1991, “Heterogeneous Medium: Is an Equivalent Macroscopic Description Possible?,” Int. J. Eng. Sci., 29 , pp. 785–795.

[CrossRef]Eringen, A. C., and Ingram, J. D., 1965, “A Continuum Theory of Chemically Reacting Media,” Int. J. Eng. Sci., 3 , pp. 197–212.

[CrossRef]Wang, L. Q., 1994, “Generalized Fourier Law,” Int. J. Heat Mass Transfer, 37 , pp. 2627–2634.

[CrossRef]Cengel, Y. A., and Boles, M. A., 2006, "*Thermodynamics: An Engineering Approach*", 5th ed., McGraw-Hill, Boston.

Wang, L. Q., 1995, “Properties of Heat Flux Functions and a Linear Theory of Heat Flux,” Int. J. Mod. Phys. B, 9 , pp. 1113–1122.

[CrossRef]Wang, L. Q., 2001, “Further Contributions on the Generalized Fourier Law,” Int. J. Transp. Phenom., 2 , pp. 299–305.

Wang, L. Q., 1996, “A Decomposition Theorem of Motion,” Int. J. Eng. Sci., 34 , pp. 417–423.

[CrossRef]Pennes, H. H., 1948, “Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm,” J. Appl. Physiol., 1 , pp. 93–122.

Wulff, W., 1974, “The Energy Conservation Equation for Living Tissues,” IEEE Trans. Biomed. Eng., BME-21 , pp. 494–495.

[CrossRef]Klinger, H. G., 1974, “Heat Transfer in Perfused Tissue I: General Theory,” Bull. Math. Biol., 36 , pp. 403–415.

Chen, M. M., and Holmes, K. R., 1980, “Microvascular Contributions in Tissue Heat Transfer,” Ann. N.Y. Acad. Sci., 335 , pp. 137–150.

[CrossRef]Cattaneo, C., 1958, “A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation,” Compt. Rend., 247 , pp. 431–433.

Vernotte, P., 1958, “Les Paradoxes de la Théorie Continue de I’equation de la Chaleur,” Compt. Rend., 246 , pp. 3154–3155.

Vernotte, P., 1961, “Some Possible Complications in the Phenomena of Thermal Conduction,” Compt. Rend., 252 , pp. 2190–2191.

Wang, L. Q., Zhou, X. S., and Wei, X. H., 2008, "*Heat Conduction: Mathematical Models and Analytical Solutions*", Springer-Verlag, Heidelberg.

Tzou, D. Y., 1992, “Thermal Shock Phenomena Under High-Rate Response in Solids,” Annu. Rev. Heat Transfer, 4 , pp. 111–185.

Chandrasekharaiah, D. S., 1986, “Thermoelasticity With Second Sound: A Review,” Appl. Mech. Rev., 39 , pp. 355–376.

[CrossRef]Chandrasekharaiah, D. S., 1998, “Hyperbolic Thermoelasticity: A Review of Recent Literature,” Appl. Mech. Rev., 51 , pp. 705–729.

[CrossRef]Tzou, D. Y., 1997, "*Macro-to Microscale Heat Transfer: The Lagging Behavior*", Taylor & Francis, Washington, DC.

Herwig, H., and Beckert, K., 2000, “Experimental Evidence About the Controversy Concerning Fourier or Non-Fourier Heat Conduction in Materials With a Nonhomogeneous Inner Structure,” Heat Mass Transfer, 36 , pp. 387–392.

[CrossRef]Kaminski, W., 1990, “Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure,” ASME J. Heat Transfer, 112 , pp. 555–560.

[CrossRef]Mitra, K., Kumar, S., Vedavarz, A., and Moallemi, M. K., 1995, “Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat,” ASME J. Heat Transfer, 117 , pp. 568–573.

[CrossRef]Graßmann, A., and Peters, F., 1999, “Experimental Investigation of Heat Conduction in Wet Sand,” Heat Mass Transfer, 35 , pp. 289–294.

[CrossRef]Roetzel, W., Putra, N., and Das, S. K., 2003, “Experiment and Analysis for Non-Fourier Conduction in Materials With Non-Homogeneous Inner Structure,” Int. J. Therm. Sci., 42 , pp. 541–552.

[CrossRef]Vedavarz, A., Mitra, K., Kumar, S., and Moallemi, M. K., 1992, “Effect of Hyperbolic Heat Conduction on Temperature Distribution in Laser Irradiated Tissue With Blood Perfusion,” Adv. Bio. Heat Mass Transfer, ASME HTD, 231 , pp. 7–16.

Luikov, A. V., 1966, “Application of Irreversible Thermodynamics Methods to Investigation of Heat and Mass Transfer,” Int. J. Heat Mass Transfer, 9 , pp. 139–152.

[CrossRef]Tzou, D. Y., 1995, “A Unified Field Approach for Heat Conduction From Micro- to Macro-Scales,” ASME J. Heat Transfer, 117 , pp. 8–16.

[CrossRef]Joseph, D. D., and Preziosi, L., 1989, “Heat Waves,” Rev. Mod. Phys., 61 , pp. 41–73.

[CrossRef]Joseph, D. D., and Preziosi, L., 1990, “Addendum to the Paper Heat Waves,” Rev. Mod. Phys., 62 , pp. 375–391.

[CrossRef]Wang, L. Q., 2000, “Solution Structure of Hyperbolic Heat-Conduction Equation,” Int. J. Heat Mass Transfer, 43 , pp. 365–373.

[CrossRef]Liu, J., Zhang, X. X., Wang, C. C., and Liu, W. Q., 1997, “Engineering Investigation on Medical Application Approaches for the Thermal Wave Effects in Living Tissue,” Space Med. Med. Eng. (Beijing), 10 , pp. 135–139.

Liu, J., Zhang, X. X., and Liu, W. Q., 1999, “The Thermal Pulse Decay Method for Invasive Measurement of Blood Perfusion of Tissue in Vivo,” Prog. Nat. Sci., 9 , pp. 179–184.

Zhu, T. C., and Feng, X. Z., 2001, “Numerical Analysis of the Relationship Between Blood Flow Coefficient and Living Tissue Thermal Behavior,” Chin. J. Hemort., 11 , pp. 182–183.

Chato, J. C., and Lee, R. C., 1998, “The Future of Biothermal Emerging,” Ann. N.Y. Acad. Sci., 858 , pp. 1–20.

[CrossRef]Deng, Z. S., and Liu, J., 2003, “Non-Fourier Hear Conduction Effect on Prediction of Temperature Transients and Thermal Stress in Skin Cryopreservation,” J. Therm. Stresses, 26 , pp. 779–798.

[CrossRef]Shih, T. C., Kou, H. S., Liauh, C. T., and Lin, W. L., 2005, “The Impact of Thermal Wave Characteristics on Thermal Dose Distribution During Thermal Therapy: A Numerical Study,” Med. Phys., 32 , pp. 3029–3036.

[CrossRef]Liu, J., 2000, “Preliminary Survey on the Mechanisms of the Wave-Like Behaviors of Heat Transfer in Living Tissues,” Forsch. Ingenieurwes., 66 , pp. 1–10.

[CrossRef]Liu, J., Chen, X., and Xu, L. X., 1999, “New Thermal Wave Aspects on Burn Evaluation of Skin Subjected to Instantaneous Heating,” IEEE Trans. Biomed. Eng., 46 , pp. 420–428.

[CrossRef]Ma, N., Jiang, S., Li, H., and Zhang, X., 2003, “Analysis of Non-Fourier Effect and Laser-Induced Thermal Damage of Laser-Irradiated Layered Human Skin Tissue,” Space Med. Med. Eng. (Beijing), 16 , pp. 133–137.

Tung, M. M., Trujillo, M., Lopez-Molina, J. A., Rivera, M. J., and Berjano, E. J., 2009, “Modeling the Heating of Biological Tissue Based on the Hyperbolic Heat Transfer Equation,” Math. Comput. Modell., 50 , pp. 665–672.

[CrossRef]Xu, M. T., and Wang, L. Q., 2005, “Dual-Phase-Lagging Heat Conduction Based on Boltzmann Transport Equation,” Int. J. Heat Mass Transfer, 48 , pp. 5616–5624.

[CrossRef]Cheng, L., Xu, M. T., and Wang, L. Q., 2008, “From Boltzmann Transport Equation to Single-Phase-Lagging Heat Conduction,” Int. J. Heat Mass Transfer, 51 , pp. 6018–6023.

[CrossRef]Cheng, L., Xu, M. T., and Wang, L. Q., 2008, “Single- and Dual-Phase-Lagging Heat Conduction Models in Moving Media,” ASME J. Heat Transfer, 130 , pp. 121302.

[CrossRef]Guyer, R. A., and Krumhansi, J. A., 1966, “Solution of the Linearized Boltzmann Equation,” Phys. Rev., 148 , pp. 766–778.

[CrossRef]Anisimòv, S. I., Kapeliovich, B. L., and Perelman, T. L., 1974, “Electron Emission From Metal Surfaces Exposed to Ultra-Short Laser Pulses,” Sov. Phys. JETP, 39 , pp. 375–377.

Kaganov, M. I., Lifshitz, I. M., and Tanatarov, M. V., 1957, “Relaxation Between Electrons and Crystalline Lattices,” Sov. Phys. JETP, 4 , pp. 173–178.

Qiu, T. Q., and Tien, C. L., 1993, “Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals,” ASME J. Heat Transfer, 115 , pp. 835–841.

[CrossRef]Tzou, D. Y., and Zhang, Y. S., 1995, “An Analytical Study on the Fast-Transient Process in Small Scales,” Int. J. Eng. Sci., 33 , pp. 1449–1463.

[CrossRef]Vadasz, P., 2005, “Absence of Oscillations and Resonance in Porous Media Dual-Phase-Lagging Fourier Heat Conduction,” ASME J. Heat Transfer, 127 , pp. 307–314.

[CrossRef]Vadasz, P., 2005, “Explicit Conditions for Local Thermal Equilibrium in Porous Media Heat Conduction,” Transp. Porous Media, 59 , pp. 341–355.

[CrossRef]Vadasz, P., 2005, “Lack of Oscillations in Dual-Phase-Lagging Heat Conduction for a Porous Slab Subject to Imposed Heat Flux and Temperature,” Int. J. Heat Mass Transfer, 48 , pp. 2822–2828.

[CrossRef]Vadasz, P., 2006, “Exclusion of Oscillations in Heterogeneous and Bi-Composite Media Thermal Conduction,” Int. J. Heat Mass Transfer, 49 , pp. 4886–4892.

[CrossRef]Vadasz, P., 2006, “Heat Conduction in Nanofluid Suspensions,” ASME J. Heat Transfer, 128 , pp. 465–477.

[CrossRef]Wang, L. Q., and Wei, X. H., 2008, “Equivalence Between Dual-Phase-Lagging and Two-Phase-System Heat Conduction Processes,” Int. J. Heat Mass Transfer, 51 , pp. 1751–1756.

[CrossRef]Wang, L. Q., and Wei, X. H., 2009, “Nanofluids: Synthesis, Heat Conduction and Extension,” ASME J. Heat Transfer, 131 , pp. 033102.

[CrossRef]Wang, L. Q., and Wei, X. H., 2009, “Heat Conduction in Nanofluids,” Chaos, Solitons Fractals, 39 , pp. 2211–2215.

[CrossRef]Wang, L. Q., and Xu, M. T., 2002, “Well-Posedness of Dual-Phase-Lagging Heat Conduction Equation: Higher Dimensions,” Int. J. Heat Mass Transfer, 45 , pp. 1165–1171.

[CrossRef]Dai, W. Z., and Nassar, R., 2002, “An Approximate Analytical Method for Solving 1D Dual-Phase-Lagging Heat Transfer Equations,” Int. J. Heat Mass Transfer, 45 , pp. 1585–1593.

[CrossRef]Antaki, P. J., 1998, “Solution for Non-Fourier Dual Phase Lag Heat Conduction in a Semi-Infinite Slab With Surface Heat Flux,” Int. J. Heat Mass Transfer, 41 , pp. 2253–2258.

[CrossRef]Dai, W. Z., and Nassar, R., 1999, “A Finite Difference Scheme for Solving the Heat Transport Equation at the Microscale,” Numer. Methods Partial Differ. Equ., 15 , pp. 697–708.

[CrossRef]Lin, C. K., Hwang, C. C., and Chang, Y. P., 1997, “The Unsteady Solutions of a Unified Heat Conduction Equation,” Int. J. Heat Mass Transfer, 40 , pp. 1716–1719.

[CrossRef]Tang, D. W., and Araki, N., 1999, “Wavy, Wavelike, Diffusive Thermal Responses of Finite Rigid Slabs to High-Speed Heating of Laser-Pulses,” Int. J. Heat Mass Transfer, 42 , pp. 855–860.

[CrossRef]Tzou, D. Y., 1995, “The Generalized Lagging Response in Small-Scale and High-Rate Heating,” Int. J. Heat Mass Transfer, 38 , pp. 3231–3240.

[CrossRef]Tzou, D. Y., and Chiu, K. S., 2001, “Temperature-Dependent Thermal Lagging in Ultrafast Laser Heating,” Int. J. Heat Mass Transfer, 44 , pp. 1725–1734.

[CrossRef]Wang, L. Q., Xu, M. T., and Zhou, X. S., 2001, “Well-Posedness and Solution Structure of Dual-Phase-Lagging Heat Conduction,” Int. J. Heat Mass Transfer, 44 , pp. 1659–1669.

[CrossRef]Xu, M. T., and Wang, L. Q., 2002, “Thermal Oscillation and Resonance in Dual-Phase-Lagging Heat Conduction,” Int. J. Heat Mass Transfer, 45 , pp. 1055–1061.

[CrossRef]Mengi, Y., and Turhan, D., 1978, “The Influence of Retardation Time of the Heat Flux on Pulse Propagation,” ASME J. Appl. Mech., 45 , pp. 433–435.

Chester, M., 1966, “High Frequency Thermometry,” Phys. Rev., 145 , pp. 76–80.

[CrossRef]Tzou, D. Y., “Nonequilibrium Transport: The Lagging Behavior,” Adv. Transport Phenom., in press.

Xu, F., Seffen, K. A., and Lu, T. J., 2008, “Non-Fourier Analysis of Skin Biothermomechanics,” Int. J. Heat Mass Transfer, 51 , pp. 2237–2259.

[CrossRef]Liu, K. C., and Chen, H. T., 2009, “Analysis for the Dual-Phase-Lag Bio-Heat Transfer During Magnetic Hyperthermia Treatment,” Int. J. Heat Mass Transfer, 52 , 1185–1192.

[CrossRef]Zhou, J., Chen, J. K., and Zhang, Y. W., 2009, “Dual-Phase Lag Effects on Thermal Damage to Biological Tissues Caused by Laser Irradiation,” Comput. Biol. Med., 39 , pp. 286–293.

[CrossRef]Zhou, J., Zhang, Y. W., and Chen, J. K., 2009, “An Axisymmetric Dual-Phase-Lag Bioheat Model for Laser Heating of Living Tissues,” Int. J. Therm. Sci., 48 , pp. 1477–1485.

[CrossRef]Goyeau, B., Benihaddadene, T., Gobin, D., and Quintard, M., 1997, “Averaged Momentum Equation for Flow Through a Nonhomogenenous Porous Structure,” Transp. Porous Media, 28 , pp. 19–50.

[CrossRef]Haro, M. L., Rio, J. A., and Whitaker, S., 1996, “Flow of Maxwell Fluids in Porous Media,” Transp. Porous Media, 25 , pp. 167–192.

[CrossRef]Quintard, M., and Whitaker, S., 1994, “Transport in Ordered and Disordered Porous Media III: Closure and Comparison Between Theory and Experiment,” Transp. Porous Media, 15 , pp. 31–49.

[CrossRef]Wang, L. Q., 1997, “Frame-Indifferent and Positive-Definite Reynolds Stress-Strain Relation,” J. Fluid Mech., 352 , pp. 341–358.

[CrossRef]Whitaker, S., 1986, “Flow in Porous Media I: A Theoretical Derivation of Darcy’s Law,” Transp. Porous Media, 1 , pp. 3–25.

[CrossRef]Whitaker, S., 1996, “The Forchheimer Equation: A Theoretical Development,” Transp. Porous Media, 25 , pp. 27–61.

[CrossRef]Whitaker, S., 1999, "*The Method of Volume Averaging*", Kluwer Academic, Dordrecht.

Wang, L. Q., 2000, “Flows through Porous Media: A Theoretical Development at Macroscale,” Transp. Porous Media, 39 , pp. 1–24.

[CrossRef]Quintard, M., and Whitaker, S., 1993, “One- and Two-Equation Models for Transient Diffusion Processes in Two-Phase Systems,” Adv. Heat Transfer, 23 , 369–464.

Fan, J., and Wang, L. Q., 2010, “Is Classical Energy Equation Adequate for Convective Heat Transfer in Nanofluids?,” Advances in Mechanical Engineering, 2010 , 719406.

[CrossRef]Zhang, Y. W., 2009, “Generalized Dual-Phase Lag Bioheat Equations Based on Nonequilibrium Heat Transfer in Living Biological Tissues,” Int. J. Heat Mass Transfer, 52 , pp. 4829–4834.

[CrossRef]