Chatwin, P. C., 1975, “On the Longitudinal Dispersion of Passive Contaminant in Oscillatory Flows in Tubes,” J. Fluid Mech., 71 (3), pp. 513–527.

[CrossRef]Watson, E. J., 1983, “Diffusion in Oscillatory Pipe Flow,” J. Fluid Mech., 133 (8), pp. 233–244.

[CrossRef]Jaeger, M. J., and Kurzweg, U. H., 1983, “Determination of the Longitudinal Dispersion Coefficient in Flows Subjected to High-Frequency Oscillations,” Phys. Fluids, 26 (6), pp. 1380–1382.

[CrossRef]Zhao, T. S., and Cheng, P., 1998, “Enhanced Axial Heat Diffusion by a Reciprocating Flow,” "*Annual Review of Heat Transfer*", Vol. 9 , C.L.Tien, ed., Begell House, New York, pp. 388–395.

Kurzweg, U. H., and Zhao, L. D., 1984, “Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities,” Phys. Fluids, 27 (11), pp. 2624–2627.

[CrossRef]Kurzweg, U. H., 1985, “Enhanced Heat Conduction in Fluids Subjected to Sinusoidal Oscillations,” ASME J. Heat Transfer, 107 (2), pp. 459–462.

[CrossRef]Kurzweg, U. H., 1986, “Temporal and Spatial Distribution of Heat Flux in Oscillating Flow Subjected to Axial Temperature Gradient,” Int. J. Heat Mass Transfer, 29 (12), pp. 1969–1977.

[CrossRef]Kurzweg, U. H., 1986, Heat Transfer Device for the Transport of Large Conduction Flux Without Net Mass Transfer, U. S. Patent No. 4590993.

Zhang, J. G., and Kurzweg, U. H., 1991, “Numerical Simulation of Time-Dependent Heat Transfer in Oscillating Pipe Flow,” AIAA J. Thermophy. Heat Transfer, 5 (3), pp. 401–406.

[CrossRef]Zhang, J. G., and Kurzweg, U. H., 1991, “A Numerical Study of Enhanced Thermal Pumping (ETP),” 8th Symposium on Space Nuclear Power Systems, Albuquerque, NM, AIP Conf. Proc., 217 (2), pp. 728–733.

Katsuta, M., Nagata, K., Maruyama, Y., and Tsujimori, A., 1991, “Fundamental Characteristics of Heat Conduction Enhancement in Oscillating Viscous Flow–Dream Pipe,” "*3rd ASME/JSME Thermal Engineering Joint Conference*", Reno, NV, Vol. 3 , pp. 69–74.

Kaviany, M., 1990, “Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Analysis,” ASME J. Heat Transfer, 112 (1), pp. 49–55.

[CrossRef]Kaviany, M., and Reckker, M., 1990, “Performance of a Heat Exchanger Based on Enhanced Heat Diffusion in Fluids by Oscillation: Experiment,” ASME J. Heat Transfer, 112 (1), pp. 56–63.

[CrossRef]Rocha, L. A. O., and Bejan, A., 2001, “Geometric Optimization of Periodic Flow and Heat Transfer in a Volume Cooled by Parallel Tubes,” ASME J. Heat Transfer, 123 (2), pp. 233–239.

[CrossRef]Nishio, S., Shi, X. H., and Zhang, W. M., 1995, “Oscillation-Induced Heat Transport: Heat Transport Characteristics Along Liquid-Columns of Oscillation-Controlled Heat Transport Tubes,” Int. J. Heat Mass Transfer, 38 (13), pp. 2457–2470.

[CrossRef]Akachi, H., 1990, Structure of a Heat Pipe, U. S. Patent No. 4921041.

Akachi, H., 1993, Structure of Micro-Heat Pipe, U. S. Patent No. 5219020.

Cai, Q., Chen, C. I., and Asfia, J. F., 2006, “Operating Characteristic Investigations in Pulsating Heat Pipe,” ASME J. Heat Transfer, 128 (12), pp. 1329–1334.

[CrossRef]Ma, H. B., Borgmeyer, B., Cheng, P., and Zhang, Y., 2008, “Heat Transport Capability in an Oscillating Heat Pipe,” ASME J. Heat Transfer, 130 (8), p. 081501 (1–7).

[CrossRef]Cai, Q., Chen, C. I., and Asfia, J. F., 2007, “Experimental Investigations of an Avionics Cooling System for Aerospace Vehicle,” AIAA J. Spacecr. Rockets, 44 (2), pp. 439–444.

[CrossRef]Borgmeyer, B., and Ma, H. B., 2007, “Experimental Investigation of Oscillating Motions in a Flat Plate Pulsating Heat Pipe,” AIAA J. Thermophys. Heat Transfer, 21 (2), pp. 405–409.

[CrossRef]Zhang, Y., and Faghri, A., 2008, “Advances and Unsolved Issues in Pulsating Heat Pipes,” Heat Transfer Eng., 29 (1), pp. 20–40.

[CrossRef]Qu, J., Wu, H., Cheng, P., and Wang, X., 2009, “Non-Linear Analyses of Temperature Oscillations in a Closed-Loop Pulsating Heat Pipe,” Int. J. Heat Mass Transfer, 52 (15–16), pp. 3481–3489.

Howell, J. T., Fikes, J., and O’Neil, M., 2005, “Novel Space-Based Solar Power Technologies and Architectures for Earth and Beyond,” "*56th Int. Aeronautical Congress*", Fukuoka, Japan, IAC-05-C3.1.04.

Furukawa, M., 2006, “Specific Performance Calculations for Two Types of Space Solar Power Systems,” "*8th Biennial ASME Conference on Engineering Systems and Design Analysis*", Turin, Italy, ESDA2006-95107.

Kaviany, M., 1986, “Some Aspects of Enhanced Heat Diffusion in Fluids by Oscillation,” Int. J. Heat Mass Transfer, 29 (12), pp. 2002–2006.

[CrossRef]Gedeon, D., 1986, “Mean-Parameter Modeling of Oscillating Flow,” ASME J. Heat Transfer, 108 (3), pp. 513–518.

[CrossRef]Ozawa, M., and Kawamoto, A., 1991, “Lumped-Parameter Modeling of Heat Transfer Enhanced by Sinusoidal Motion of Fluid,” Int. J. Heat Mass Transfer, 34 (12), pp. 3083–3095.

[CrossRef]Takahashi, I., 1994, “Axial Heat-Transfer Characteristics Enhanced by Oscillating Flow in a Thin Tube,” "*Heat Transfer – Japanese Res., 23(6)*", Scripta Technica, New York, pp. 525–543.
Takahashi, I., (Originally published in Trans. Jpn. Soc. Mech. Eng., 61 (581), 1995, pp. 275 282 (in Japanese)).

Furukawa, M., 2003, “Design Formulas for Oscillating Heat Transport in Open-Ended Tubes,” ASME J. Heat Transfer, 125 (6), pp. 1183–1186.

[CrossRef]Schmit, L. A., 1956, “Application of the Variational Method, the Galerkin Technique, and Normal Coordinates in a Transient Temperature Distribution Problem,” Massachusetts Institute of Technology, WADC Technical Report 56-287, ASTIA Document AD-97326.

Goodman, T. R., 1963, “Application of Integral Methods to Transient Nonlinear Heat Transfer,” "*Advances in Heat Transfer*", Vol. 1 , T.F.Irvine, Jr. and J.P.Harnett, eds., Academic, New York, pp. 51–122.

Furukawa, M., 2008, “Fluid Property Equations as Data Base for Thermal Design Calculations,” Trans. Jpn. Soc. Aeronaut. Space Sci., 51 (173), pp. 203–208.

[CrossRef]