Shapiro, B., 2003, “Creating Compact Models of Complex Electronic Systems: An Overview and Suggested Use of Existing Model Reduction and Experimental System Identification Tools,” IEEE Trans. Compon. Packag. Technol., 26 , pp. 165–172.

[CrossRef]Simpson, T., Peplinski, J., Koch, P., and Allen, J., 2001, “Metamodels for Computer-Based Engineering Design: Survey and Recommendations,” Eng. Comput., 17 , pp. 129–150.

[CrossRef]Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., 1989, “Design and Analysis of Computer Experiments,” Stat. Sci., 4 , pp. 409–423.

[CrossRef]Santner, T. J., Williams, B. J., and Notz, W. I., 2003, "*The Design and Analysis of Computer Experiments*", Springer, New York.

Jin, R., Chen, W., and Simpson, T., 2001, “Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria,” Struct. Multidiscip. Optim., 23 , pp. 1–13.

[CrossRef]Pacheco, J. E., Amon, C. H., and Finger, S., 2003, “Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process,” ASME J. Mech. Des., 125 , pp. 664–672.

[CrossRef]Qian, Z., Seepersad, C. C., Joseph, V. R., Allen, J. K., and Wu, C. F. J., 2006, “Building Surrogate Models Based on Detailed and Approximate Simulations,” ASME J. Mech. Des., 128 , pp. 668–667.

[CrossRef]Qian, P. Z. G., and Wu, C. F. J., 2008, “Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments,” Technometrics, 50 (2), pp. 192–204.

[CrossRef]Holmes, P., Lumley, J. L., and Berkooz, G., 1996, "*Turbulence, Coherent Structures, Dynamical Systems and Symmetry*", Cambridge University Press, Cambridge, Great Britain.

Farge, M., Kevlahan, N., Perrier, V., and Goirand, E., 1996, “Wavelets and Turbulence,” Proc. IEEE, 84 (4), pp. 639–669.

[CrossRef]Rambo, J. D., 2006, “Reduced-Order Modeling of Multiscale Turbulent Convection: Application to Data Center Thermal Management,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.

Rolander, N., 2005, “An Approach for the Robust Design of Air Cooled Data Center Server Cabinets,” M.S. thesis, Georgia Institute of Technology, Atlanta.

Rambo, J., and Joshi, Y., 2007, “Reduced-Order Modeling of Turbulent Forced Convection With Parametric Conditions,” Int. J. Heat Mass Transfer, 50 (3-4), pp. 539–551.

[CrossRef]Treichel, H., 2001, “Low Dielectric Constant Materials,” J. Electron. Mater., 30 , pp. 290–298.

[CrossRef]Ho, P. S., and Kwok, T., 1988, “Electromigration in Metals,” Rep. Prog. Phys., 52 , pp. 301–348.

[CrossRef]Gurrum, S., Joshi, Y., King, W., Ramakrishna, K., and Gall, M., 2008, “A Compact Approach to on-Chip Interconnect Heat Conduction Modeling Using the Finite Element Method,” ASME J. Electron. Packag., 130 , p. 031001.

[CrossRef]Gurrum, S., Joshi, Y., King, W. P., and Ramakrishna, K., 2004, “Numerical Simulation of Electron Transport Through Constriction in a Metallic Thin Film,” IEEE Electron Device Lett., 25 , pp. 696–698.

[CrossRef]Gurrum, S., King, W., Joshi, Y., and Ramakrishna, K., 2008, “Size Effect on the Thermal Conductivity of Thin Metallic Films Investigated by Scanning Joule Expansion Microscopy (SJEM),” ASME J. Heat Transfer, 130 , 082403.

[CrossRef]Gurrum, S., King, W. P., and Joshi, Y. K., 2008, “A Semi-Analytical Solution for the 3ω Method Including the Effect of Heater Thermal Conduction,” J. Appl. Phys., 103 , p. 113517.

[CrossRef]Bar-Cohen, A., Elperin, T., and Eliasi, R., 1989, “θjc Characterization of Chip Packages—Justification, Limitations, and Future,” IEEE Trans. Compon., Hybrid, Manuf. Technol., 12 , pp. 724–731.

[CrossRef]Rosten, H. I., Lasance, C. J. M., and Parry, J. D., 1997, “The World of Thermal Characterization According to DELPHI—Part I: Background to DELPHI,” IEEE Trans. Compon. Packag. Manuf. Technol. Part A, 20 , pp. 384–439.

[CrossRef]Boyalakuntla, D. S., and Murthy, J. Y., 2002, “Hierarchical Compact Models for Simulation of Electronic Chip Packages,” IEEE Trans. Compon. Packag. Technol., 25 , pp. 192–203.

[CrossRef]Adams, V. H., Joshi, Y., and Blackburn, D. L., 1997, “Application of Compact Model Methodologies to Natural Convection Cooling of an Array of Electronic Packages in a Low Profile Enclosure,” Advances in Electronic Packaging 1997, SuhirE., M. Shiratori, Y.-C. Lee, and G. Subbarayan, eds., ASME, New York, Vol. 2, pp. 1967–1974.

Sabry, M.-N., 2004, “Higher Order Compact Thermal Models,” "*Proceedings of the 10th International Workshop on Thermal Investigations of ICs and Systems*" ("*THERMINIC*"), Sophia Antipolis, Côte d’Azur, France, pp. 273–280, Pub. TIMA Laboratory.

Ramakrishna, K., Gall, M., Justison, P., and Kawasaki, H., 2004, “Prediction of Maximum Allowed RMS Currents for Electromigration Design Guidelines,” "*Proceedings of the 7th International Workshop on Stress-Induced Phenomena in Metallization*", P.S.Ho, S.P.Baker, T.Nakamura, and C.A.Volkert, eds., AIP Conference Proceedings, Melville, NY, Vol. 741 , pp. 156–164.

Tang, L., and Joshi, Y., 2005, “A Multi-Grid Based Multi-Scale Thermal Analysis Approach for Combined Mixed Convection, Conduction and Radiation Due to Discrete Heating,” ASME Trans. J. Heat Transfer, 127 , pp.
18–26.

[CrossRef]Patankar, S. V., 1980, "*Numerical Heat Transfer and Fluid Flow*", Hemisphere, New York.

Tang, L., 1998, A Multi-Scale Conjugate Thermal Analysis Methodology for Convectively Cooled Electronic Enclosures, Ph.D. dissertation, University of Maryland, MA.

Ravindran, S. S., 2002, “Adaptive Reduced-Order Controllers for a Thermal Flow Using Proper Orthogonal Decomposition,” SIAM J. Sci. Comput., 23 (6), pp. 1924–1942.

[CrossRef]Park, H. M., and Cho, D. H., 1996, “The Use of the Karhunen-Loeve Decomposition for the Modeling of Distributed Parameter Systems,” Chem. Eng. Sci., 51 (1), pp. 81–98.

[CrossRef]Park, H. M., and Cho, D. H., 1996, “Low Dimensional Modeling of Flow Reactors,” Int. J. Heat Mass Transfer, 39 (16), pp. 3311–3323.

[CrossRef]Sirovich, L., and Park, H. M, 1990, “Turbulent Thermal Convection in a Finite Domain: Part I. Theory,” Phys. Fluids, 2 (9), pp. 1649–1657.

[CrossRef]Sirovich, L., and Park, H. M., 1990, “Turbulent Thermal Convection in a Finite
Domain: Part II. Numerical Results,” Phys. Fluids, 2 (9), pp. 1649–1657.

[CrossRef]Tarman, I. H., and Sirovich, L., 1998, “Extensions of Karhunen-Loeve Based Approximations of Complicated Phenomena,” Comput. Methods Appl. Mech. Eng., 155 , pp. 359–368.

[CrossRef]Park, H. M., and Li, W. J., 2002, “Boundary Optimal Control of Natural Convection by Means of Mode Reduction,” ASME J. Dyn. Syst., Meas., Control, 124 , pp. 47–54.

[CrossRef]Ding, P., Wu, X.-H., He, Y.-L., and Tao, W.-Q., 2008, “A Fast and Efficient Method for Predicting Fluid Flow and Heat Transfer Problems,” ASME J. Heat Transfer, 130 (3), p. 032502.

[CrossRef]Ly, H. V., and Tran, H. T., 2001, “Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition,” Math. Comput. Modell., 33 , pp. 223–236.

[CrossRef]Strang, G., 1988, "*Linear Algebra and its Applications*", Thomson Learning (currently Cengage Learning), Florence, KY.

Rolander, N., Rambo, J., Joshi, Y., Mistree, F., and Allen, J. K., 2006, “Robust Design of Turbulent Convective Systems Using the Proper Orthogonal Decomposition,” ASME J. Mech. Des., 128 , pp. 844–855.

[CrossRef]Nie, Q., and Joshi, Y., 2008, “Multiscale Thermal Modeling Methodology for Thermoelectrically Cooled Electronic Cabinets,” Numer. Heat Transfer, Part A, 53 (3), pp. 225–248.

[CrossRef]Nie, Q., and Joshi, Y., 2008, “Reduced Order Modeling and Experimental Validation of Steady Turbulent Convection in Connected Domains,” Int. J. Heat Mass Transfer, 51 (25-26), pp. 6063–6076.

[CrossRef]Kowalski, T., and Radmehr, A., 2000, “Thermal Analysis of an Electronics Enclosure: Coupling Flow Network Modeling (FNM) and Computational Fluid Dynamics (CFD),” "*IEEE 16th Semiconductor Thermal (FNM) and Computational Fluid Dynamics (CFD), IEEE 16th Semiconductor Thermal Measurement and Management Symposium*", San Jose, CA, pp. 60–67.

Belady, C., Kelkar, K. M., and Patankar, S. V., 1995, “Improving Productivity in Electronic Packaging With Flow Network Modeling (FNM),” Electron. Cooling, 5 (1), pp. 36–40.

Lian, B., Dishongh, T., Pullen, D., Yan, H., and Chen, J., 2000, “Flow Network Modeling for Improving Flow Distribution of Microelectronics Burn-in-Oven,” "*The 7th Intersociety Conference on Thermal and Mechanical Phenomena in Electronic Systems*", Las Vegas, NV, pp. 81–91.

Samadiani, E., and Joshi, Y., 2010, “Multi-Parameter Model Reduction in
Multi-
Scale Convective Systems,” Int. J. Heat Mass Transfer, 53 , pp. 2193–2205.

[CrossRef]Samadiani, E., and Joshi, Y., 2010, “Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers,” ASME J. Heat Transfer, 132 , p. 071402.

[CrossRef]Rolander, N., Rambo, J., Joshi, Y., Allen, J. K., and Mistree, F., 2006, “An Approach for Robust Design of Turbulent Convective Systems,” ASME J. Mech. Des., 128 , pp. 844–855.

[CrossRef]Chen, W., Allen, J. K., Tsui, K., and Mistree, F., 1996, “A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors,” ASME J. Mech. Des., 118 , pp. 478–485.

[CrossRef]Mistree, F., Hughes, O. F., and Bras, B., 1993, “The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm,” "*AIAA Structural Optimization: Status and Promise*", M.P.Kamat, ed., AIAA, Washington, DC, pp. 247–286.

Samadiani, E., Joshi, Y., Allen, J. K., Mistree, F., 2010, “Adaptable Robust Design of Multi-Scale Convective Systems Applied to Energy Efficient Data Centers,” Numer. Heat Transfer, Part A, 57 , pp. 69–100.

[CrossRef]Crippen, M. J., Alo, R. K., Champion, D., Clemo, R. M., Grosser, C. M., Gruendler, N. J., Mansuria, M. S., Matteson, J. A., Miller, M. S., and Trumbo, B. A., 2005, “BladeCenter Packaging, Power, and Cooling,” IBM J. Res. Dev., 49 (6), pp. 887–904.

[CrossRef]Boucher, T. D., Auslander, D. M., Bash, C. E., Federspiel, C. C., and Patel, C. D., 2004, “Viability of Dynamic Cooling Control in a Data Center Environment,” "*Intersociety Conference on Thermal Phenomena*", IEEE, pp. 593–600.

ASHRAE, 2004, *Thermal Guidelines for Data Processing Environments*, American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Atlanta, GA.

Colclasure, A. M., Sanandaji, B. M., Vincent, T. L., and Kee, R. J., 2011, Modeling and Control of Tubular Solid-Oxide Fuel Cell Systems. I: Physical Models and Linear Model Reduction, J. Power Sources, 196 , pp. 196–207.

[CrossRef]Cai, L., and White, R. E., 2010, “An Efficient Electrochemical–Thermal Model for a Lithium-Ion Cell by Using the Proper Orthogonal Decomposition Method,” J. Electrochem. Soc., 157 (11), pp. A1188–A1195.

[CrossRef]
Schmidt, F., Pirc, N., Mongeau, M., and Chinesta, F., 2011, “Efficient Mold Cooling Optimization by Using Model Reduction,” Int. J. Mater. Form, 4 , pp. 73–82.

[CrossRef]Lang, Y., Malacin, A., Biegler, L. T., Munteanu, S., Madsen, J. I., and
Zitney, S. E., 2009, “Reduced Order Model Based on Principal Component Analysis for Process Simulation and Optimization,” Energy Fuels, 23 , pp.
1695–1706.

[CrossRef]Gao, Y., Roux, J. J., Zhao, L. H., and Jiang, Y., 2008, “Dynamical Building Simulation: A Low Order Model for Thermal Bridges Losses,” Energy Build., 40 , pp. 2236–2243.

[CrossRef]