Prosetya, H., and Datta, A. K., 1991, “Batch Microwave Heating of Liquids: An Experimental Study,” J. Microwave Power Electromagn. Energy, 26 (14), pp. 215–226.

Swain, M. V. L., Russell, S. L., Clarke, R. N., and Swain, M. J., 2004, “The Development of Food Stimulants for Microwave Oven Testing,” Int. J. Food Sci. Technol., 39 (6), pp. 623–630.

[CrossRef]Rattanadecho, P., Suwannapum, N., Watanasungsuit, A., and Duangduen, A., 2007, “Drying of Dielectric Materials Using Microwave—Continuous Belt Furnace,” ASME J. Manuf. Sci. Eng., 129 (1), pp. 157–163.

[CrossRef]Cha-um, W., Pakdee, W., and Rattanadecho, P., 2009, “Experimental Analysis of Microwave Heating of Dielectric Materials Using a Rectangular Wave Guide (MODE: TE10) (Case Study: Water Layer and Saturated Porous Medium),”Exp. Therm. Fluid Sci., 33 (3), pp. 472–481.

[CrossRef]Vongpradubchai, S., and Rattanadecho, P., 2009, “The Microwave Processing of Wood Using a Continuous Microwave Belt Drier,” Chem. Eng. Process. Intensification, 48 (5), pp. 997–1003.

[CrossRef]Shou-Zheng, Z., and Han-Kui, C., 1988, “Power Distribution Analysis in Rectangular Microwave Heating Applicator With Stratified Load,” J. Microwave Power Electromagn. Energy, 23 (2), pp. 139–143.

Watanabe, W., and Ohkawa, S., 1978, “Analysis of Power Density Distribution in Microwave Ovens,” J. Microwave Power Electromagn. Energy, 13 (2), pp. 173–182.

Ayappa, K. G., Davis, H. T., Davis, E. A., and Gordan, J., 1992, “Two-Dimensional Finite Element Analysis of Microwave Heating,” AIChE J., 38 , pp. 1577–1592.

[CrossRef]Datta, A., Prosetya, H., and Hu, W., 1992, “Mathematical Modeling of Batch Heating of Liquids in a Microwave Cavity,” J. Microwave Power Electromagn. Energy, 27 , pp. 38–48.

Zhang, Q., Jackson, T. H., and Ungan, A., 2000, “Numerical Modeling of Microwave Induced Natural Convection,” Int. J. Heat Mass Transfer, 43 , pp. 2141–2154.

[CrossRef]Knoerzer, K., Regier, M., and Schubert, H., 2006, “Microwave Heating: A New Approach of Simulation and Validation,” Chem. Eng. Technol., 29 (7), pp. 796–801.

[CrossRef]Zhu, J., Kuznetsov, A. V., and Sandeep, K. P., 2007, “Mathematical Modeling of Continuous Flow Microwave Heating of Liquids (Effects of Dielectric Properties and Design Parameters),” Int. J. Therm. Sci., 46 , pp. 328–341.

[CrossRef]Chatterjee, S., Basak, T., and Das, S. K., 2007, “Microwave Driven Convection in a Rotating Cylindrical Cavity: A Numerical Study,” J. Food Eng., 79 , pp. 1269–1279.

[CrossRef]Ni, H., Datta, A. K., and Torrance, K. E., 1999, “Moisture Transport in Intensive Microwave Heating of Biomaterials: A Multiphase Porous Media Model,” Int. J. Heat Mass Transfer, 42 (8), pp. 1501–1512.

[CrossRef]Datta, A. K., and Ni, H., 2002, “Infrared and Hot-Air-Assisted Microwave Heating of Foods for Control of Surface Moisture,” J. Food Eng., 51 (4), pp. 355–364.

[CrossRef]Campanone, L. A., and Zaritzky, N. E., 2005, “Mathematical Analysis of Microwave Heating Process,” J. Food Eng., 69 (3), pp. 359–368.

[CrossRef]Curet, S., Rouaud, O., and Boillereaux, L., 2008, “Microwave Tempering and Heating in a Single-Mode Cavity: Numerical and Experimental Investigations,” Chem. Eng. Process., 47 , pp. 1656–1665.

Liu, F., Turner, I., and Bialkowski, M., 1994, “A Finite-Difference Time-Domain Simulation of Power Density Distribution in a Dielectric Loaded Microwave Cavity,” J. Microwave Power Electromagn. Energy, 29 , pp. 138–147.

Zhao, H., and Turner, I. W., 1996, “An Analysis of the Finite-Difference Time-Domain Method for Modeling the Microwave Heating of Dielectric Materials Within a Three-Dimensional Cavity System,” J. Microwave Power Electromagn. Energy, 31 , pp. 199–214.

Ma, L. H., Paul, D. L., Pothecary, N., Railton, C., Bows, J., Barratt, L., , 1995, “Experimental Validation of a Combined Electromagnetic and Thermal FDTD Model of a Microwave-Heating Process,” IEEE Trans. Microwave Theory Tech., 43 (11), pp. 2565–2572.

[CrossRef]Ratanadecho, P., Aoki, K., and Akahori, M., 2002, “Influence of Irradiation Time, Particle Sizes, and Initial Moisture Content During Microwave Drying of Multi-Layered Capillary Porous Materials,” ASME Trans. J. Heat Transfer124 , pp. 151–161.

[CrossRef]Gori, F., Gentili, G., and Matini, L., 1987, “Microwave Heating of Porous Media,” ASME Trans. J. Heat Transfer109 , pp. 522–525.

[CrossRef]Ayappa, K. G., Davis, H. T., Davis, E. A., and Gordan, J., 1991, “Analysis of Microwave Heating of Materials With Temperature-Dependent Properties,” AIChE J., 37 , pp. 313–322.

[CrossRef]Barringer, S. A., Ayappa, K. G., Davis, E. A., Davis, H. T., and Gordan, J., 1995, “Power Absorption During Microwave Heating of Emulsions and Layered Systems,” J. Food Sci., 60 , pp. 1132–1136.

[CrossRef]Ratanadecho, P., Aoki, K., and Akahori, M., 2002, “The Characteristics of Microwave Melting of Frozen Packed Beds Using a Rectangular Waveguide,” IEEE Trans. Microwave Theory Tech., 50 (6), pp. 1495–1502.

Rattanadecho, P., Aoki, K., and Akahori, M., 2002, “Experimental Validation of a Combined Electromagnetic and Thermal Model for a Microwave Heating of Multi-layered Materials Using a Rectangular Wave Guide,”ASME Trans. J. Heat Transfer, 124 , pp. 992–996.

[CrossRef]Rattanadecho, P., 2004, “Theoretical and Experimental Investigation of Microwave Thawing of Frozen Layer Using a Microwave Oven (Effects of Layered Configurations and Layer Thickness),” Int. J. Heat Mass Transfer, 47 , pp. 937–945.

[CrossRef]Basak, T., and Meenakshi, A., 2006, “Influence of Ceramic Supports on Microwave Heating for Composite Dielectric Food Slabs,” AIChE J., 52 (6), pp. 1995–2007.

[CrossRef]Samanta, S. K., and Basak, T., 2008, “Theoretical Analysis of Efficient Microwave Processing of Oil-Water Emulsions Attached With Various Ceramic Plates,” Food Res. Int., 41 , pp. 386–403.

[CrossRef]
Samanta, S. K., Basak, T., and Sengupta, B., 2008, “Theoretical Analysis on Microwave Heating of Oil-Water Emulsions Supported on Ceramic, Metallic or Composite Plates,” Int. J. Heat Mass Transfer, 51 (25–26), pp. 6136–6156.

[CrossRef]Chaktranond, C., and Rattanadecho, P., “Analysis of Heat and Mass Transfer Enhancement in Porous Material Subjected to Electric Fields (Effects of Particle Sizes and Layer Arrangement),” Exp. Therm. Fluid Sci. (in press).

Wang, J., and Schmugge, T., 1980, “An Empirical Model for the Complex Dielectric Permittivity of Soil as a Function of Water Content,” IEEE Trans. Geosci. Remote Sens., GE-18 (4), pp. 288–295.

[CrossRef]Mur, G., 1981, “Absorbing Boundary Conditions for the Finite Difference Approximation of the Time Domain Electromagnetic Field Equations,” IEEE Trans. Electromagn. Compat.23 , pp. 377–382.

[CrossRef]Yee, K. S., 1966, “Numerical Solution of Initial Boundary Value Problem Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propag., 14 , pp. 302–307.

[CrossRef]Nield, D. A., and Bejan, A., 1999, "*Convection in Porous Media*", 2nd ed., Springer-Verlag, Inc., New York.

Ingham, D. B., and Pop, I., 1998, "*Transport Phenomena in Porous Media*", Pergamon, Oxford.

Vafai, K., 2004, "*Handbook of Porous Media*", Vol. II, Marcel Dekker, New York.

Patankar, S. V., 1980, "*Numerical Heat Transfer and Fluid Flow*", Hemisphere/McGraw-Hill, New York.