Das, S. K., Choi, S. U. S., Yu, W.,and Pradeep, T., 2008, "*Nanofluids: Science and Technology*", John Wiley & Sons, New York.

Tillman, P., and Hill.J. M., 2007, “Determination of Nanolayer Thickness for a Nanofluid,” Int. Commun. Heat Mass Transfer, 34 (4), pp. 399–407.

[CrossRef]Li, C. H.,and Peterson, G. P., 2007, “Mixing Effect on the Enhancement of the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids),” Int. J. Heat Mass Transfer, 50 , pp. 4668–4677.

[CrossRef]Keblinski, P., Phillpot, S. R., Choi, S. U. S.,and Eastman, J. A., 2002, “Mechanisms of Heat Flow in Suspensions of Nano-Seized Particles (Nanofluids),” Int. J. Heat Mass Transfer, 45 , pp. 855–863.

[CrossRef]Koo, J.,and Kleinstreuer, C., 2004, “A New Thermal Conductivity Model for Nanofluids,” J. Nanopart. Res., 6 , pp. 577–588.

[CrossRef]Kleinstreuer, C.,and Li, J., 2008, “Discussion: Effects of Various Parameters on Nanofluid Thermal Conductivity,” ASME J. Heat Transfer, 130 , p. 025501.

[CrossRef]Gupte, S. K.,and Advani, S. G., 1995, “Role of Micro-Convection Due to Non-Affine Motion of Particles in a Mono-Disperse Suspension,” Int. J. Heat Mass Transfer, 38 (16), pp. 2945–2958.

[CrossRef]Leal, L. G., 1973, “On the Effective Conductivity of a Dilute Suspension of Spherical Drops in the Limit of Low Particle Peclet Number,” Chem. Eng. Commun., 1 , pp. 21–31.

[CrossRef]Gupte, S. K., Advani, S. G.,and Hu, P., 1993, “A Cell Model to Investigate the Influence of Fall Velocity Distribution on Transport Processes in a Sedimenting Suspension,” "*64th Annual Society of Rheology Meeting*", Santa Barbara, CA.

Wang, X. W., Xu, X. F.,and Choi, S. U. S., 1999, “Thermal Conductivity of Nanoparticle-Fluid Mixture,” J. Thermophys. Heat Transfer, 13 , pp. 474–480.

[CrossRef]Prasher, R., 2006, “Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids,” ASME J. Heat Transfer, 128 , pp. 588–595.

[CrossRef]Bao, Y., 2009, “Thermal Conductivity Equations Based on Brownian Motion in Suspensions of Nanoparticles (Nanofluids),” ASME J. Heat Transfer, 130 , p.
042408.

Kaviany, M., 1995, "*Principles of Heat Transfer in Porous Media*", Springer-Verlag, Berlin, Germany.

Xuan, Y., and Roetzel, W., 2000, “Conceptions for Heat Transfer Correlation of Nanofluids,” Int. J. Heat Mass Transfer, 43 , pp. 3701–3707.

[CrossRef]Panton, R. L., 2005, "*Incompressible Flow*", 3rd ed., John Wiley & Sons, New York.

Koo, J. M., 2005, “Computational Nanofluid Flow and Heat Transfer Analyses Applied to Micro-Systems,” Ph.D. Dissertation, NC State University, Raleigh, NC.

Einstein, A., 1956, "*Investigations on the Theory of the Brownian Movement*", Dover Publications, Inc., New York.

Israelachvili, J. N., 1985, "*Intermolecular and Surface Forces With Applications to Colloidal and Biological Systems*", Academic Press, Inc., Orlando, FL.

Wang, X. W., and Xu, X. F., 1999, “Thermal Conductivity of Nanoparticle-Fluid Mixture,” J. Thermophys. Heat Transfer, 13 , pp. 474–480.

[CrossRef]Feng, Y.,and Lin, J. Z., 2008, “The Collision Efficiency of Spherical Dioctyl Phthalate Aerosol Particles in the Brownian Coagulation,” Chin. Phys. B, 17 (12), pp. 4547–4553.

[CrossRef]Ratnesh, K. S., 2008, “Effect of Brownian Motion on Thermal Conductivity of Nanofluids,” ASME J. Heat Transfer, 130 , p. 042406.

[CrossRef]Karniadakis, G. E., 2002, "*Micro Flows Fundamentals and Simulation*", Springer-Verlag, New York.

Benaroya, H., 1998, "*Mechanical Vibration: Analysis, Uncertainties, and Control*", Simon & Schuster/Viacom Company, Upper Saddle River, NJ.

Li, J., 2008, “Computational Analysis of Nanofluid Flow in Microchannels With Applications to Micro-Heat Sinks and Bio-MEMS,” Ph.D. dissertation, North Carolina State University, Raleigh, NC.

Maxwell, J. C., 1891, "*A Treatise on Electricity and Magnetism*", 3rd ed., Clarendon Press, Oxford, UK.

Hamilton, R. L.,and Crosser, O. K., 1962, “Thermal Conductivity of Heterogeneous Two Component Systems,” Ind. Eng. Chem. Fundam., 1 , pp. 187–191.

[CrossRef]Xuan, Y.,and Li, Q., 2000, “Heat Transfer Enhancement of Nanofluids,” Int. J. Heat Mass Transfer, 21 , pp. 58–64.

[CrossRef]Xie, H., Wang, J., Xi, T.,and Liu, Y., 2002, “Thermal Conductivity of Suspensions Containing Nanosized SiC Particles,” Int. J. Thermophys., 23 (2), pp. 571–580.

[CrossRef]Das, S. K., Putra, N., Theisen, P.,and Roetzel, W., 2003, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” ASME J. Heat Transfer, 125 , pp. 567–574.

[CrossRef]Chon, C. H., Kihm, K. D., Lee, S. P.,and Choi, S. U. S., 2005, “Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2 O3 ) Thermal Conductivity Enhancement,” Appl. Phys. Lett., 87 , p. 153107.

[CrossRef]Zhang, X., Gu, H.,and Fujii, M., 2006, “Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluid,” AIAA J., 41 , pp. 831–840.

[CrossRef]Mintsa, H. A., Roy, G., Nguyen, C. T.,and Doucet, D., 2009, “New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids,” Int. J. Therm. Sci., 48 , pp. 363–371.

[CrossRef]Eastman, J. A., Choi, U. S., Li, S., Thompson, L. J.,and Lee, S., 1997, “Enhanced Thermal Conductivity Through the Development of Nanofluids,” "*Nanophase and Nanocomposite Materials II*", S.Komarneni, J.C.Parker, and H.J. Wollenberger, eds., MRS, Pittsburg, PA, pp. 3–11.

Hunter, R. J., 1991, "*Foundations of Colloid Science*", Vol. I , Oxford University Press Inc., New York.