Alexander, A. E., and Jonson, P., 1949, "Colloid Science", Clarendon, Oxford.
Tikhomolova, K. P., 1993, "Electro-Osmosis", Ellis Horwood, New York.
Reuss, F., 1809, “Sur Un Nouvel Effect De L’electricte Galvanique,” Memoires de la Societe Imperiale de Naturalistes de Moscou, 2 , pp. 327–337.
Banga, A. K., 1998, "Electrically Assisted Transdermal and Topical Drug Delivery", Taylor & Francis, London.
Masliyah, J. H., and Bhattacharjee, S., 2006, "Electrokinetic and Colloid Transport Phenomena", Wiley, New York.
Oosterbroek, R. E., and Berg, A. V. D., 2003, "Lob-on-a-Chip: Miniaturized Systems for (Bio) Chemical Analysis and Sintesis", Elsevier, Boston.
Ren, Y. Q., and Stein, D., 2008, “Slip-Enhanced Electrokinetic Energy Conversion in Nanofluidic Channels,” Nanotechnology, 19 (19), pp. 195707.
Yao, S. H., and Santiago, J. G., 2003, “Porous Glass Electroosmotic Pumps: Theory,” J. Colloid Interface Sci., 268 (1), pp. 133–142.
[CrossRef]Zeng, S. L., Chen, C. H., Mikkelsen, J. C., and Santiago, J. G., 2001, “Fabrication and Characterization of Electroosmotic Micropumps,” Sens. Actuat. B Chem., 79 (2–3), pp. 107–114.
[CrossRef]Jianhu, N., Yitung, C., Boehm, R. F., and Katukota, S., 2008, “A Photoelectrochemical Model of Proton Exchange Water Electrolysis for Hydrogen Production,” J. Heat Transf., 130 (4), p. 042409.
Depaolo, D. J., and Orr, F. M., 2007, “Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems,” Technical Report No. Office of basic energy sciences, U.S. Department of Energy, Report No. 935430.
Kitamura, A., Fujiwara, K., Yamamoto, T., Nishikawa, S., and Moriyama, H., 1999, “Analysis of Adsorption Behavior of Cations Onto Quartz Surface by Electrical Double-Layer Model,” J. Nucl. Sci. Technol., 36 (12), pp. 1167–1175.
[CrossRef]Laser, D. J., and Santiago, J. G., 2004, “A Review of Micropumps,” J. Micromech. Microeng., 14 (6), pp. R35–R64.
[CrossRef]Coelho, D., Shapiro, M., Thovert, J. F., and Adler, P. M., 1996, “Electroosmotic Phenomena in Porous Media,” J. Colloid Interface Sci., 181 (1), pp. 169–190.
[CrossRef]Marino, S., Coelho, D., Bekri, S., and Adler, P. M., 2000, “Electroosmotic Phenomena in Fractures,” J. Colloid Interface Sci., 223 (2), pp. 292–304.
[CrossRef]Rosanne, M., Paszkuta, M., Thovert, J. F., and Adler, P. M., 2004, “Electro-Osmotic Coupling in Compact Clays,” Geophys. Res. Lett., 31 (18), p. 020770.
[CrossRef]Rosanne, M., Paszkuta, M., and Adler, P. M., 2006, “Electrokinetic Phenomena in Saturated Compact Clays,” J. Colloid Interface Sci., 297 (1), pp. 353–364.
[CrossRef]Gupta, A. K., Coelho, D., and Adler, P. M., 2006, “Electroosmosis in Porous Solids for High Zeta Potentials,” J. Colloid Interface Sci., 303 (2), pp. 593–603.
[CrossRef]Levine, S., Marriott, J. R., Neale, G., and Epstein, N., 1975, “Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta Potentials,” J. Colloid Interface Sci., 52 (1), pp. 136–149.
[CrossRef]Chien-Hsin, C., 2009, “Thermal Transport Characteristics of Mixed Pressure and Electro-Osmotically Driven Flow in Micro- and Nanochannels With Joule Heating,” J. Heat Transf., 131 (2), p. 022401.
[CrossRef]Bhattacharyya, S., and Nayak, A. K., “Combined Effect of Surface Roughness and Heterogeneity of Wall Potential on Electroosmosis in Microfluidic/Nanofuidic Channels,” J. Fluid Eng., p. 041103.
Kang, Y. J., Yang, C., and Huang, X. Y., 2002, “Electroosmotic Flow in a Capillary Annulus With High Zeta Potentials,” J. Colloid Interface Sci., 253 (2), pp. 285–294.
[CrossRef]Philip, J. R., and Wooding, R. A., 1970, “Solution of Poisson-Boltzmann Equation About a Cylindrical Particle,” J. Chem. Phys., 52 (2), pp. 953–959.
[CrossRef]Kang, Y. J., Yang, C., and Huang, X. Y., 2004, “Analysis of the Electroosmotic Flow in a Microchannel Packed with Homogeneous Microspheres Under Electrokinetic Wall Effect,” Int. J. Eng. Sci., 42 (19–20), pp. 2011–2027.
[CrossRef]Kang, Y. J., Yang, C., and Huang, X. Y., 2005, “Analysis of Electroosmotic Flow in a Microchannel Packed With Microspheres,” Microfluid. Nanofluid., 1 (2), pp. 168–176.
[CrossRef]Hlushkou, D., Seidel-Morgenstern, A., and Tallarek, U., 2005, “Numerical Analysis of Electroosmotic Flow in Dense Regular and Random Arrays of Impermeable, Nonconducting Spheres,” Langmuir, 21 (13), pp. 6097–6112.
[CrossRef]Wang, J. K., Wang, M., and Li, Z. X., 2006, “Lattice Poisson-Boltzmann Simulations of Electro-Osmotic Flows in Microchannels,” J. Colloid Interface Sci., 296 (2), pp. 729–736.
[CrossRef]Wang, M. R., Wang, J. K., and Chen, S. Y., 2007, “Roughness and Cavitations Effects on Electro-Osmotic Flows in Rough Microchannels Using the Lattice Poisson-Boltzmann Methods,” J. Comput. Phys., 226 (1), pp. 836–851.
[CrossRef]Wang, M., Wang, J. K., Chen, S. Y., and Pan, N., 2006, “Electrokinetic Pumping Effects of Charged Porous Media in Microchannels Using the Lattice Poisson-Boltzmann Method,” J. Colloid Interface Sci., 304 (1), pp. 246–253.
[CrossRef]Wang, M., Pan, N., Wang, J. K., and Chen, S. Y., 2007, “Lattice Poisson-Boltzmann Simulations of Electroosmotic Flows in Charged Anisotropic Porous Media,” Commun. Comput. Phys., 2 , pp. 1055–1070.
Wang, M., and Chen, S., 2007, “Electroosmosis in Homogeneously Charged Micro- and Nanoscale Random Porous Media,” J. Colloid Interface Sci., 314 (1), pp. 264–273.
[CrossRef]Wang, M., and Pan, N., 2008, “Predictions of Effective Physical Properties of Complex Multiphase Materials,” Mater. Sci. Eng.: R, 63 (1), pp. 1–30.
[CrossRef]Wang, M. R., Wang, J. K., Pan, N., and Chen, S. Y., 2007, “Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media,” Phys. Rev. E, 75 (3), p. 036702.
[CrossRef]Wang, M. R., He, J. H., Yu, J. Y., and Pan, N., 2007, “Lattice Boltzmann Modeling of the Effective Thermal Conductivity for Fibrous Materials,” Int. J. Therm. Sci., 46 (9), pp. 848–855.
[CrossRef]Wang, M., and Pan, N., 2008, “Modeling and Prediction of the Effective Thermal Conductivity of Random Open-Cell Porous Foams,” Int. J. Heat Mass Transf., 51 (5–6), pp. 1325–1331.
[CrossRef]Wang, M., and Chen, S. Y., 2008, “On Applicability of Poisson-Boltzmann Equation for Micro- and Nanoscale Electroosmotic Flows,” Commun. Comput. Phys., 3 (5), pp. 1087–1099.
Li, D. Q., 2004, "Electrokinetics in Microfluidics", Academic Press, Oxford.
Schoch, R. B., Han, J. Y., and Renaud, P., 2008, “Transport Phenomena in Nanofluidics,” Rev. Mod. Phys., 80 (3), pp. 839–883.
[CrossRef]Joly, L., Ybert, C., Trizac, E., and Bocquet, L., 2004, “Hydrodynamics Within the Electric Double Layer on Slipping Surfaces,” Phys. Rev. Lett., 93 (25), p. 257805.
[CrossRef]Dufrêche, J. F., Marry, V., Malíková, N., and Turq, P., 2005, “Molecular Hydrodynamics for Electro-Osmosis in Clays: From Kubo to Smoluchowski,” J. Mol. Liquids, 118 (1–3), pp. 145–153.
[CrossRef]Wang, M., Liu, J., and Chen, S., 2007, “Similarity of Electroosmotic Flows in Nanochannels,” Mol. Sim., 33 (3), pp. 239–244.
[CrossRef]Wang, J. K., Wang, M., and Li, Z. X., 2008, “Lattice Evolution Solution for the Nonlinear Poisson-Boltzmann Equation in Confined Domains,” Commun. Nonlinear Sci. Numer. Simul., 13 (3), pp. 575–583.
[CrossRef]Wang, M., and Kang, Q. J., 2009, “Electrokinetic Transport in Microchannels With Random Roughness,” Analyt. Chem., 81 (8), pp. 2953–2961.
[CrossRef]Chen, S., and Doolen, G. D., 1998, “Lattice Boltzmann Method for Fluid Flows,” Annu. Rev. Fluid Mech., 30 , pp. 329–364.
[CrossRef]Wang, J. K., Wang, M., and Li, Z. X., 2007, “A Lattice Boltzmann Algorithm for Fluid-Solid Conjugate Heat Transfer,” Int. J. Therm. Sci., 46 (3), pp. 228–234.
[CrossRef]He, X., Chen, S., and Doolen, G. D., 1998, “A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit,” J. Comput. Phys., 146 (1), pp. 282–300.
[CrossRef]Peng, Y., Shu, C., and Chew, Y. T., 2004, “A 3d Incompressible Thermal Lattice Boltzmann Model and Its Application to Simulate Natural Convection in a Cubic Cavity,” J. Comput. Phys., 193 (1), pp. 260–274.
[CrossRef]Zou, Q., and He, X., 1997, “On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann Bgk Model,” Phys. Fluids, 9 (6), pp. 1591–1598.
[CrossRef]Rohde, M., Kandhai, D., Derksen, J. J., and Van Den Akker, H. E. A., 2003, “Improved Bounce-Back Methods for No-Slip Walls in Lattice-Boltzmann Schemes: Theory and Simulations,” Phys. Rev. E, 67 (6), p. 066703.
[CrossRef]Chen, S. Y., Martinez, D., and Mei, R. W., 1996, “On Boundary Conditions in Lattice Boltzmann Methods,” Phys. Fluids, 8 (9), pp. 2527–2536.
[CrossRef]Noble, D. R., Chen, S. Y., Georgiadis, J. G., and Buckius, R. O., 1995, “A Consistent Hydrodynamic Boundary Condition for the Lattice Boltzmann Method,” Phys. Fluids, 7 (1), pp. 203–209.
[CrossRef]D’orazio, A., and Succi, S., 2004, “Simulating Two-Dimensional Thermal Channel Flows by Means of a Lattice Boltzmann Method With New Boundary Conditions,” Future Gen. Comput. Syst., 20 (6), pp. 935–944.
[CrossRef]Rastogi, R. P., and Jha, K. M., 1966, “Cross-Phenomenological Coefficients. 3. Studies on Electroosmosis,” J. Phys. Chem., 70 (4), pp. 1017–1024.
[CrossRef]