0
Porous Media

Numerical Investigation of Forced Convective Heat Transfer Around and Through a Porous Circular Cylinder With Internal Heat Generation

[+] Author and Article Information
Mohammad Sadegh Valipour, Ariyan Zare Ghadi

School of Mechanical Engineering,  Semnan University,3519645399 Semnan, Iranmsvalipour@semnan.ac.ir

J. Heat Transfer 134(6), 062601 (Apr 26, 2012) (7 pages) doi:10.1115/1.4005741 History: Received July 02, 2010; Revised October 23, 2011; Published April 26, 2012; Online April 26, 2012

In this study, convective heat transfer around and through a porous circular cylinder together with internal heat generation has been investigated numerically. Governing equations containing continuity, momentum, and energy equations have been developed in polar coordinate system in both porous and nonporous media based on single-domain approach. However, governing equations in porous medium are derived using intrinsic volume averaging method. The equations are solved numerically based on finite volume method over staggered grid arrangement. Also, pressure correction-based iterative algorithm, SIMPLE, is applied for solving the pressure linked equations. Reynolds and Peclet numbers (based on cylinder diameter and velocity of free stream) are from 1 to 40. Also, Darcy number (Da) varies within the range of 10-6Da10-2 and porosity is considered 0.9 for all calculations. The influence of Da and Re numbers on local and average Nu numbers has been investigated. It is found that the local and average Nu numbers increase with any increase in Da number. Two correlations of average Nu number are presented for high and low Da numbers.

FIGURES IN THIS ARTICLE
<>
Copyright © 2012 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Figure 1

Schematic configuration of computational domain and coordinate system

Grahic Jump Location
Figure 2

A typical grid distribution inside and around the porous cylinder

Grahic Jump Location
Figure 3

Comparison of local Nu number for forced convective heat transfer around a solid circular cylinder with the results of Bharti [5]

Grahic Jump Location
Figure 4

Local Nu number variation on the surface of the porous cylinder at different Da for (a) Re=10, (b) Re=20, and (c) Re=40

Grahic Jump Location
Figure 5

Variation of average Nusselt number on the surface of the porous cylinder versus Da for different Re numbers

Grahic Jump Location
Figure 6

Nondimensional temperature profile on symmetry line at different Da for: (a) Re=10, (b) Re=20, and (c) Re=40

Grahic Jump Location
Figure 7

The position of maximum dimensionless temperature on symmetry axis as a function of Da for different Re

Grahic Jump Location
Figure 8

Isothermal contours inside and around porous cylinder at Re = 10 for: (a) Da=10-2 (b) Da=10-6

Grahic Jump Location
Figure 9

Isothermal contours inside and around porous cylinder at Re = 20 for: (a) Da=10-2 (b) Da=10-6

Grahic Jump Location
Figure 10

Isothermal contours inside and around porous cylinder at Re = 40 for: (a) Da=10-2 (b) Da=10-6

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In