Lange, F., and Miller, K., 1987, “Open-Cell, Low-Density Ceramics Fabricated From Reticulated Polymer Substrates,” Adv. Ceram. Mater., 2 (4), pp. 827–831.

van Setten, B. A., Bremmer, J., Jelles, S. J., Makkee, M., and Moulijn, J. A., 1999, “Ceramic Foam as a Potential Molten Salt Oxidation Catalyst Support in the Removal of Soot From Diesel Exhaust Gas,” Catal. Today

[CrossRef], 53 (4), pp. 613–621.

Dhamrat, R., and Ellzey, J., 2005, “Numerical and Experimental Study of the Conversion of Methane to Hydrogen in a Porous Media Reactor,” Combust. Flame

[CrossRef], 144 (4), pp. 698–709.

Howell, J., Hall, M., and Ellzey, J., 1999, “Combustion of Hydrocarbon Fuels Within Porous Inert Media,” Prog. Energy Combust. Sci.

[CrossRef], 22 (2), pp. 121–145.

Barra, A., Diepvens, G., Ellzey, J., and Henneke, M., 2003, “Numerical Study of the Effects of Material Properties on Flame Stabilization in a Porous Burner,” Combust. Flame

[CrossRef], 134 , pp. 369–379.

Barra, A., and Ellzey, J., 2004, “Heat Recirculation and Heat Transfer in Porous Burners,” Combust. Flame

[CrossRef], 137 (1–2), pp. 230–241.

Fend, T., Hoffschmidt, B., Pitz-Paal, R., Reutter, O., and Rietbrock, P., 2004, “Porous Materials as Open Volumetric Solar Receivers: Experimental Determination of Thermophysical and Heat Transfer Properties,” Energy

[CrossRef], 29 (5–6), pp. 823–833.

Steinfeld, A., and Palumbo, R., 2001, “Solar Thermochemical Process Technology,” "*Encyclopedia of Physical Science and Technology*", R.A.Meyers, ed. Academic, New York, pp. 237–256.

Petrasch, J., and Steinfeld, A., 2006, “Dynamics of a Solar Thermochemical Reactor for Steam Reforming of Methane,” Chem. Eng. Sci.

[CrossRef], 62 (16), pp. 4214–4228.

Kaviany, M., 1995, "*Principles of Heat Transfer in Porous Media*", Springer-Verlag, New York.

Whitaker, S., 1999, "*The Method of Volume Averaging*", Kluwer, Dordrecht.

Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, "*Thermal Conductivity Nonmetallic Solids*", IFI/Plenum, New York.

Wyllie, M. R. J., and Southwick, P. F., 1954, “An Experimental Investigation of the S. P., and Resistivity Phenomena in Dirty Sands,” J. Alloys Compd., 6 , pp. 44–57.

Woodside, W., and Messmer, J. H., 1961, “Thermal Conductivity of Porous Media. I. Unconsolidated Sands,” J. Appl. Phys.

[CrossRef], 32 (9), pp. 1688–1699.

Woodside, W., and Messmer, J. H., 1961, “Thermal Conductivity of Porous Media. II. Consolidated Rocks,” J. Appl. Phys.

[CrossRef], 32 (9), pp. 1699–1706.

Sullins, A. D., and Daryabeigi, K., 2001, “Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam,” 35th AIAA Thermophysics Conference , Anaheim, CA, Jun. 11–14, 2001.

Tseng, C., Yamaguchi, M., and Ohmori, T., 1997, “Thermal Conductivity of Polyurethane Foams From Room Temperature to 20K,” Cryogenics

[CrossRef], 37 (6), pp. 305–312.

Maxwell, J. C., 1891, "*A Treatise on Electricity and Magnetism*", Clarendon, Oxford.

Russell, H. W., 1935, “Principles of Heat Flow in Porous Insulators,” J. Am. Ceram. Soc.

[CrossRef], 18 , pp. 1–5.

Dul’nev, G. N., 1965, “Heat Transfer Through Solid Disperse Systems,” J. Eng. Phys., 9 (3), pp. 399–404.

Dul’nev, G. N., and Komkova, L. A., 1965, “Analysis of Experimental Data on the Heat Conductivity of Solid Porous Systems,” J. Eng. Phys., 9 (4), pp. 517–519.

Calmidi, V. V., and Mahajan, R. L., 1999, “The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams,” ASME J. Heat Transfer, 121 (2), pp. 466–471.

Bhattacharya, A., Calmidi, V., and Mahajan, R., 1999, “An Analytical-Experimental Study for the Determination of the Effective Thermal Conductivity of High Porosity Fibrous Foams,” "*Application of Porous Media Methods for Engineered Materials*", R.M.Sullivan, ed., AMD Vol. 233, ASME, New York, pp. 13–20.

Boomsma, K., and Poulikakos, D., 2001, “On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam,” Int. J. Heat Fluid Flow, 44 , pp. 827–836.

Miller, M. N., 1969, “Bounds for Effective Electrical, Thermal, and Magnetic Properties of Heterogeneous Materials,” J. Math. Phys.

[CrossRef], 10 (11), pp. 1988–2004.

Petrasch, J., Wyss, P., and Steinfeld, A., 2007, “Tomography-Based Monte Carlo Determination of Radiative Properties of Reticulate Porous Ceramics,” J. Quant. Spectrosc. Radiat. Transf.

[CrossRef], 105 , pp. 180–197.

Zeghondy, B., Iacona, E., and Taine, J., 2006, “Determination of the Anisotropic Radiative Properties of a Porous Material by Radiative Distribution Function Identification (RDFI),” Int. J. Heat Mass Transfer

[CrossRef], 49 , pp. 2810–2819.

Zeghondy, B., Iacona, E., and Taine, J., 2006, “Experimental and RDFI Calculated Radiative Properties of Mullite Foam,” Int. J. Heat Mass Transfer

[CrossRef], 49 , pp. 3702–3703.

Widjajakusuma, J., Manwart, C., Biswal, B., and Hilfer, R., 1999, “Exact and Approximate Calculations for the Conductivity of Sandstone,” Physica A

[CrossRef], 270 , pp. 325–331.

Widjajakusuma, J., Biswal, B., and Hilfer, R., 2003, “Quantitative Comparison of Mean Field Mixing Laws for Conductivity and Dielectric Constants of Porous Media,” Physica A

[CrossRef], 318 , pp. 319–333.

Krishnan, S., Murthy, J. Y., and Garimella, S. V., 2006, “Direct Simulation of Transport in Open-Cell Metal Foam,” ASME J. Heat Transfer

[CrossRef], 128 , pp. 793–799.

Weszka, J., 1978, “A Survey of Threshold Selection Techniques,” Comput. Graph. Image Process.

[CrossRef], 7 , pp. 259–265.

Truong, H. V., and Zinsmeister, G. E., 1978, “Experimental Study of Heat Transfer in Layered Composites,” Int. J. Heat Mass Transfer

[CrossRef], 21 , pp. 905–909.

Batchelor, G. K., and O’Brien, R. W., 1977, “Thermal or Electrical Conduction Through a Granular Material,” Proc. R. Soc. London, Ser. A, 355 , pp. 313–333.

Quintard, M., and Whitaker, S., 2000, “One- and Two Equation Models in Two-Phase Systems,” Adv. Heat Transfer, 23 , pp. 369–464.

Patankar, S., 1980, "*Numerical Heat Transfer and Fluid Flow*", Taylor & Francis, London.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, "*Numerical Recipes in C: The Art of Scientific Computing*", Cambridge University Press, Cambridge.

Roach, P. J., 1998, "*Verification and Validation in Computational Science and Engineering*", Hermosa, Albuquerque.

Hsu, C. T., Cheng, P., and Wong, K. W., 1994, “Modified Zehner-Schlünder Models for Stagnant Thermal Conductivity of Porous Media,” Int. J. Heat Mass Transfer

[CrossRef], 37 (17), pp. 2751–2759.

Bruggeman, D. A. G., 1935, “Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus Isotropen Substanzen,” Ann. Phys.

[CrossRef], 5 (24), pp. 636–679.

Loeb, A. L., 1954, “Thermal Conductivity: VIII. A Theory of Thermal Conductivity of Porous Materials,” J. Am. Ceram. Soc., 37 (2), pp. 96–99.

Ribaud, 1937, “Conductibilité Thermique des Materiaux Poreux et Pulverulents. Etude Théorique,” Chaleur et Industrie, 18 , pp. 36–43.

Eucken, A., 1932, “Die Wärmeleitfähigkeit Keramischer, Fester Stoffe—Ihre Berechnung aus der Wärmeleitfähigkeit der Bestandteile,” VDI Forschungsheft 353, Beilage zu, Forschung auf dem gebiet des Ingenieurwesens , Ausgabe B, Band 3.

Odelevskii, V. I., 1951, “Calculation of a Generalized Conductivity of Heterogeneous Systems,” J. Tech. Phys., 21 (6), pp. 667–677.

Lichtenecker, K., 1924, “Der Elektrische Leitungswiderstand Künstlicher und Natürlicher Aggregate,” Phys. Z., 25 (10), pp. 225–233.

Pawel, R. E., McElroy, D. L., Weaver, F. J., and Graves, R. S., 1988, “High Temperature Thermal Conductivity of a Fibrous Alumina Ceramic,” "*19th International Thermal Conductivity Conference*".

Bhattacharaya, A.Calmidi, V. V., and Mahajan, R. L., 2002, “Thermophysical properties of high porosity metal foams,” Int. J. Heat Mass Transfer

[CrossRef], 45 , pp. 1017–1031.

Mantle, W. J., and Chang, W. S., 1991, “Effective Thermal Conductivity of Sintered Metal Fibers,” J. Thermophys. Heat Transfer, 5 (4), pp. 545–549.

Dul’nev, G. N., and Zarichnyak, Y. P., 1970, “A Study of the Generalized Conductivity Coefficients in Heterogeneous Systems (Review),” Heat Transfer-Sov. Res., 2 (4), pp. 89–107.