A method using either a one-dimensional analytical or a two-dimensional numerical inverse technique is developed for measurement of local heat fluxes at the surface of a hot rotating cylinder submitted to the impingement of a subcooled water jet. The direct model calculates the temperature field inside the cylinder that is submitted to a given nonuniform and time dependent heat flux on its outer surface and to a uniform surface heat source on an inner radius. In order to validate the algorithms, simulated temperature measurements inside the cylinder are processed and used by the two inverse techniques to estimate the wall heat flux. As the problem is improperly posed, regularization methods have been introduced into the analytical and numerical inverse algorithms. The numerical results obtained using the analytical technique compare well with the results obtained using the numerical algorithm, showing a good stable estimation of the available test solutions. Furthermore, real experimental data are used for the estimation, and local boiling curves are plotted and discussed.