This paper presents an exact analytical solution for unsteady conductive heat transfer in a cylindrical multilayer composite laminate. Here, it is supposed that fibers have been wound around the cylinder in each lamina. In order to find the exact solution, the Laplace transformation is applied on anisotropic heat conduction equation to convert the time scale of problem to frequency scale and the separation of variable method is used to solve the resulted partial differential equations. The effect of fibers arrangements of multilayer cylindrical laminates and thermal boundary conditions on unsteady conductive heat transfer of these orthotropic materials is studied based on the exact solution that is presented in the current investigation. The analytical results illustrated that the unsteady temperature distribution in any multilayer composite laminates is in a state between the temperature distribution in single layer laminates with fibers’ angle equal to $0\u2003deg$ and $90\u2003deg$.