Katz, L., 1967, “Natural Convection Heat Transfer With Fluids Using Suspended Particles Which Undergo Phase Change,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

Colvin, D. P., and Mulligan, J. C., 1987, “Microencapsulated Phase-Change for Storage of Heat,” George C. Marshall Space Flight Center, Alabama, NASA Technical Brief MFS-27198.

Charunyakorn, P., Sengupta, S., and Roy, S. K., 1991, “Forced Convection Heat Transfer in Microencapsulated Phase Change Material Slurries: Flow in Circular Ducts,” Int. J. Heat Mass Transfer, 34, pp. 819–833.

[CrossRef]Roy, S. K., and Sengupta, S., 1991, “An Evaluation of Phase Change Microcapsules for Use in Enhanced Heat Transfer Fluids,” Int. Commun. Heat Mass Transfer, 18, pp. 495–507.

[CrossRef]Goel, M., Roy, S. K., and Sengupta, S., 1994, “Laminar Forced Convection Heat Transfer in Microencapsulated Phase Change Material Suspensions,” Int. J. Heat Mass Transfer, 37, pp. 593–604.

[CrossRef]Choi, E., Cho, Y. I., and Lorsch, H. G., 1994, “Forced Convection Heat Transfer With Phase-Change-Material Slurries: Turbulent Flow in a Circular Tube,” Int. J. Heat Mass Transfer, 37, pp. 207–215.

[CrossRef]Zhang, Y., and Faghri, A., 1995, “Analysis of Forced Convection Heat Transfer in Microencapsulated Phase Change Material Suspensions,” J. Thermophys. Heat Transfer, 9, pp. 727–732.

[CrossRef]Guo, Z. Y., Li, D. Y., and Wang, B. X., 1998, “A Novel Concept for Convective Heat Transfer Enhancement,” Int. J. Heat Mass Transfer, 41, pp. 2221–2225.

[CrossRef]Yamagishi, Y., Takeuchi, H., Pyatenko, A. T., and Kayukawa, N., 1999, “Characteristics of Microencapsulated PCM Slurry as a Heat-Transfer Fluid,” AIChE J., 45, pp. 696–707.

[CrossRef]Roy, S. K., and Avanic, B. L., 2001, “Turbulent Heat Transfer With Phase Change Material Suspensions,” Int. J. Heat Mass Transfer, 44, pp. 2277–2285.

[CrossRef]Hu, X., and Zhang, Y., 2002, “Novel Insight and Numerical Analysis of Convective Heat Transfer Enhancement With Microencapsulated Phase Change Material Slurries: Laminar Flow in a Circular Tube With Constant Heat Flux,” Int. J. Heat Mass Transfer, 45, pp. 3163–3172.

[CrossRef]Inaba, H., Kim, M. J., and Horibe, A., 2004, “Melting Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurries With Plural Microcapsules Having Different Diameters,” ASME J. Heat Transfer, 126, pp. 558–565.

[CrossRef]Hao, Y. L., and Tao, Y.-X., 2004, “A Numerical Model for Phase-Change Suspension Flow in Microchannel,” Numer. Heat Transfer, Part A, 46, pp. 55–77.

[CrossRef]Xing, K. Q., Tao, Y.-X., and Hao, Y. L., 2005, “Performance Evaluation of Liquid Flow With PCM Particles in Microchannels,” ASME J. Heat Transfer, 127, pp. 931–940.

[CrossRef]Alvarado, J. L., Marsh, C., Sohm, C., Phetteplace, G., and Newell, T., 2007, “Thermal Performance of Microencapsulated Phase Change Material Slurry in Turbulent Flow Under Constant Heat Flux,” Int. J. Heat Mass Transfer, 50, pp. 1938–1952.

[CrossRef]Zhao, C. Y., and Zhang, G. H., 2011, “Review on Microencapsulated Phase Change Materials (MEPCMs): Fabrication, Characterization and Applications,” Renewable Sustainable Energy Rev., 15, pp. 3813–3832.

[CrossRef]Chen, Z., and Fang, G., 2011, “Preparation and Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry: A Review,” Renewable Sustainable Energy Rev., 15, pp. 4624–4632.

[CrossRef]Hallman, T. M., 1958, “Combined Forced and Free Convection in a Vertical Tube,” Ph.D. thesis, Purdue University, West Lafayette, IN.

Morton, B. R., 1959, “Laminar Convection in Uniformly Heated Vertical Pipes,” J. Fluid Mech., 8, pp. 227–240.

[CrossRef]Metais, B., and Eckert, E. R. G., 1964, “Forced, Mixed, and Free Convection Regimes,” ASME J. Heat Transfer, 86, pp. 295–296.

[CrossRef]Lawrence, W. T., and Chato, J. C., 1966, “Heat-Transfer Effects on the Developing Laminar Flow Inside Vertical Tubes,” ASME J. Heat Transfer, 88, pp. 214–222.

[CrossRef]Barozzi, G. S., Dumas, A., and Collins, M. W., 1984, “Sharp Entry and Transition Effects for Laminar Combined Convection of Water in Vertical Tubes,” Int. J. Heat Fluid Flow, 5, pp. 235–241.

[CrossRef]Bernier, M. A., and Baliga, B. R., 1992, “Visualization of Upward Mixed-Convection Flows in Vertical Pipes Using a Thin Semitransparent Gold-Film Heater and Dye Injection,” Int. J. Heat Fluid Flow, 13, pp. 241–249.

[CrossRef]Wang, M., Tsuji, T., and Nagano, Y., 1994, “Mixed Convection With Flow Reversal in the Thermal Entrance Region of Horizontal and Vertical Pipes,” Int. J. Heat Mass Transfer, 37, pp. 2305–2319.

[CrossRef]Su, Y. C., and Chung, J. N., 2000, “Linear Stability Analysis of Mixed-Convection Flow in a Vertical Pipe,” J. Fluid Mech., 422, pp. 141–166.

[CrossRef]Behzadmehr, A., Galanis, N., and Laneville, A., 2003, “Low Reynolds Number Mixed Convection in Vertical Tubes With Uniform Wall Heat Flux,” Int. J. Heat Mass Transfer, 46, pp. 4823–4833.

[CrossRef]Japikse, D., 1973, “Advances in Thermosyphon Technology,” Adv. Heat Transfer, 9, pp. 1–111.

[CrossRef]Bernier, M. A., and Baliga, B. R., 1992, “A 1-D/2-D Model and Experimental Results for a Closed-Loop Thermosyphon With Vertical Heat Transfer Sections,” Int. J. Heat Mass Transfer, 35, pp. 2969–2982.

[CrossRef]Runchal, A. K., 2009, “Brian Spalding: CFD and Reality—A Personal Recollection,” Int. J. Heat Mass Transfer, 52, pp. 4063–4073.

[CrossRef]Artemov, V., Beale, S. B., deVahl Davis, G., Escudier, M. P., Fueyo, N., Launder, B. E., Leonardi, E., Malin, M. R., Minkowycz, W. J., Patankar, S. V., Pollard, A., Rodi, W., Runchal, A., and Vanka, S. P., 2009, “A Tribute to D.B. Spalding and his Contributions in Science and Engineering,” Int. J. Heat Mass Transfer, 52, pp. 3884–3905.

[CrossRef]Scott, D. A., 2006, “Heat Transfer in Pipes Conveying Slurries of Microencapsulated Phase-Change Materials in Water,” Ph.D. thesis, McGill University, Montreal, QC, Canada.

Scott, D. A., and Baliga, B. R., 2008, “Experimental Investigation of Laminar Mixed Convection in a Vertical Pipe With Slurries of a Microencapsulated Phase-Change Material in Distilled Water,” Proceedings of the 5th International Conference on Transport Phenomena in Multiphase Systems, Bialystok, Poland, June 30–July 3, Vol. 2, pp. 189–196.

Brennen, C. E., 2005, *Fundamentals of Multiphase Flow*, Cambridge University Press, Cambridge, UK.

Scott, D. A., Lamoureux, A., and Baliga, B. R., 2010, “Computational Investigation of Laminar Mixed Convection in a Vertical Pipe With Slurries of a Microencapsulated Phase-Change Material in Distilled Water,” Proceedings of the International Heat Transfer Conference, Washington, DC, Aug. 8–13, ASME Paper No. IHTC14-22974.

[CrossRef]Lamoureux, A., 2012, “Investigations of a Closed-Loop Thermosyphon Operating With Slurries of a Microencapsulated Phase-Change Material,” Ph.D. thesis, McGill University, Montreal, QC, Canada.

Incropera, F. P., and DeWitt, D. P., 2002, *Fundamentals of Heat and Mass Transfer*, 5th ed., John Wiley & Sons, New York.

Maxwell, J. C., 1954, *A Treatise on Electricity and Magnetism*, 3rd ed., Dover, New York.

Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1982, *Transport Phenomena*, 2nd ed., John Wiley & Sons, New York.

Crowe, C. T., 2006, *Multiphase Flow Handbook*, Taylor & Francis, Boca Raton, FL.

Inaba, H., 2000, “New Challenge in Advanced Thermal Energy Transportation Using Functionally Thermal Fluids,” Int. J. Therm. Sci., 39, pp. 991–1003.

[CrossRef]Cox, R. G., and Mason, S. G., 1971, “Suspended Particles in Fluid Flow Through Tubes,” Annu. Rev. Fluid Mech., 4, pp. 291–316.

[CrossRef]Elkouh, N., and Baliga, B. R., 1995, “Effect of Variable Properties on Natural Convection in Water Near Its Density Inversion Temperature,” Proceedings of the 30th National Heat Transfer Conference, Portland, OR, Aug. 6–8, HTD, Vol. 33, pp. 53–63.

Patankar, S. V., 1980, *Numerical Heat Transfer and Fluid Flow*, Hemisphere Publishing Corp., Washington, DC.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, *Numerical Recipes in fortran*, 2nd ed., Cambridge University Press, UK, pp. 678–683.

Runchal, A. K., 1972, “Convergence and Accuracy of Three Finite Difference Schemes for a Two-Dimensional Conduction and Convection Problem,” Int. J. Numer. Methods Eng., 4, pp. 541–550.

[CrossRef]Baliga, B. R., and Atabaki, N., 2006, “Control-Volume-Based Finite Difference and Finite Element Methods,” *Handbook of Numerical Heat Transfer*, 2nd ed., W. J.Minkowycz, E. M.Sparrow, and J. Y.Murthy, eds., John Wiley & Sons, New York, Chap. 6.

Spalding, D. B., 1972, “A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives,” Int. J. Numer. Methods Eng., 4, pp. 551–559.

[CrossRef]Leonard, B. P., 1997, “Bounded Higher-Order Upwind Multidimensional Finite-Volume Convection-Diffusion Algorithms,” *Advances in Numerical Heat Transfer*, W. J.Minkowycz and E. M.Sparrow, eds., Taylor & Francis, New York, Vol. 1, Chap. 1, pp. 1–57.

Rhie, C. M., and Chow, W. L., 1983, “Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation,” AIAA J., 21, pp. 1525–1532.

[CrossRef]Saabas, H. J., and Baliga, B. R., 1994, “A Co-Located Equal-Order Control-Volume Finite Element Method for Multidimensional, Incompressible Fluid Flow—Part I: Formulation,” Numer. Heat Transfer, Part B, 26, pp. 381–407.

[CrossRef]Richardson, L. F., 1910, “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations With Application to a Masonry Dam,” Trans. R. Soc. London, Ser. A, 210, pp. 307–357.

[CrossRef]Rao, S. S., 1996, *Engineering Optimization: Theory and Practice*, 3rd ed., John Wiley & Sons, New York.

Jaluria, Y., 1998, *Design and Optimization of Thermal Systems*, McGraw-Hill, New York.

Duplain, E., and Baliga, B. R., 2009, “Computational Optimization of the Thermal Performance of Internally Finned Ducts,” Int. J. Heat Mass Transfer, 52, pp. 3929–3942.

[CrossRef]