Research Papers: Experimental Techniques

Combined Microstructure and Heat Conduction Modeling of Heterogeneous Interfaces and Materials

[+] Author and Article Information
Ishan Srivastava

e-mail: isrivast@purdue.edu

Sridhar Sadasivam

e-mail: ssadasi@purdue.edu

Kyle C. Smith

e-mail: kyle.c.smith@gmail.com

Timothy S. Fisher

e-mail: tsfisher@purdue.edu
Birck Nanotechnology Center and School of Mechanical Engineering,
Purdue University,
West Lafayette, IN 47906

Manuscript received October 15, 2012; final manuscript received December 19, 2012; published online May 16, 2013. Assoc. Editor: Leslie Phinney.

J. Heat Transfer 135(6), 061603 (May 16, 2013) (13 pages) Paper No: HT-12-1568; doi: 10.1115/1.4023583 History: Received October 15, 2012; Revised December 19, 2012

Heterogeneous materials are becoming more common in a wide range of functional devices, particularly those involving energy transport, conversion, and storage. Often, heterogeneous materials are crucial to the performance and economic scalability of such devices. Heterogeneous materials with inherently random structures exhibit a strong sensitivity of energy transport properties to processing and operating conditions. Therefore, improved predictive modeling capabilities are needed that quantify the detailed microstructure of such materials based on various manufacturing processes and correlate them with transport properties. In this work, we integrate high fidelity microstructural and transport models, which can aid in the development of high performance energy materials. Heterogeneous materials are generally comprised of nanometric or larger length scale domains of different materials or different phases of the same material. State-of-the-art structural optimization models demonstrate the predictability of the microstructure for heterogeneous materials manufactured via powder compaction of variously shaped and sized particles. The ability of existing diffusion models to incorporate the essential multiscale features in random microstructures is assessed. Lastly, a comprehensive approach is presented for the combined modeling of a high fidelity microstructure and heat transport therein. Exemplary results are given that reinforce the importance of developing predictive models with rich stochastic output that connect microstructural information with physical transport properties.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Majumdar, A., 2004, “Thermoelectricity in Semiconductor Nanostructures,” Science, 303(5659), pp. 777–778. [CrossRef] [PubMed]
Bell, L. E., 2008, “Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems,” Science, 321(5895), pp. 1457–1461. [CrossRef] [PubMed]
Ovshinsky, S. R., Fetcenko, M. A., and Ross, J., 1993, “A Nickel Metal Hydride Battery for Electric Vehicles,” Science, 260(5105), pp. 176–181. [CrossRef] [PubMed]
Schlapbach, L., and Zuttel, A., 2001, “Hydrogen-Storage Materials for Mobile Applications,” Nature (London), 414(6861), pp. 353–358. [CrossRef]
Whittingham, M. S., 2004, “Lithium Batteries and Cathode Materials,” Chem. Rev., 104(10), pp. 4271–4301. [CrossRef] [PubMed]
Baxter, J., Bian, Z., Chen, G., Danielson, D., Dresselhaus, M. S., Fedorov, A. G., Fisher, T. S., Jones, C. W., Maginn, E., Kortshagen, U., Manthiram, A., Nozik, A., Rolison, D. R., Sands, T., Shi, L., Sholl, D., and Wu, Y., 2009, “Nanoscale Design to Enable the Revolution in Renewable Energy,” Energy Environ. Sci., 2(6), pp. 559–588. [CrossRef]
Xu, J., and Fisher, T. S., 2006, “Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays,” Int. J. Heat Mass Transfer, 49(910), pp. 1658–1666. [CrossRef]
Riffat, S., and Ma, X., 2003, “Thermoelectrics: A Review of Present and Potential Applications,” Appl. Therm. Eng., 23(8), pp. 913–935. [CrossRef]
Vining, C. B., 2009, “An Inconvenient Truth About Thermoelectrics,” Nature Mater., 8(2), pp. 83–85. [CrossRef]
Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P., 2008, “Enhanced Thermoelectric Performance of Rough Silicon Nanowires,” Nature (London), 451(7175), pp. 163–167. [CrossRef]
Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W. A., III, and Heath, J. R., 2008, “Silicon Nanowires as Efficient Thermoelectric Materials,” Nature (London), 451(7175), pp. 168–171. [CrossRef]
Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., and Venkatasubramanian, R., 2009, “On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics,” Nature Nanotechnol., 4(4), pp. 235–238. [CrossRef]
Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., and Chen, G., 2009, “Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects,” Energy Environ. Sci., 2(5), pp. 466–479. [CrossRef]
Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F., and Chen, G., 2012, “Perspectives on Thermoelectrics: From Fundamentals to Device Applications,” Energy Environ. Sci., 5(1), pp. 5147–5162. [CrossRef]
Li, J., Daniel, C., and Wood, D. L., 2011, Cathode Manufacturing for Lithium-Ion Batteries, Wiley-VCH, Berlin.
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M., and Schalkwijk, W. V., 2005, “Nanostructured Materials for Advanced Energy Conversion and Storage Devices,” Nature Mater., 4(5), pp. 366–377. [CrossRef]
Zhang, J., Fisher, T. S., Ramachandran, P. V., Gore, J. P., and Mudawar, I., 2005, “A Review of Heat Transfer Issues in Hydrogen Storage Technologies,” ASME J. Heat Transfer, 127(12), pp. 1391–1399. [CrossRef]
Yoshida, K., and Morigami, H., 2004, “Thermal Properties of Diamond/Copper Composite Material,” Microelectron. Reliab., 44(2), pp. 303–308. [CrossRef]
Han, Z., and Fina, A., 2011, “Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review,” Prog. Polym. Sci., 36(7), pp. 914–944. [CrossRef]
Torquato, S., 2002, “Statistical Description of Microstructures,” Ann. Rev. Mater. Res., 32(1), pp. 77–111. [CrossRef]
Maire, E., Buffire, J. Y., Salvo, L., Blandin, J. J., Ludwig, W., and Ltang, J. M., 2001, “On the Application of X-Ray Microtomography in the Field of Materials Science,” Adv. Eng. Mater., 3(8), pp. 539–546. [CrossRef]
Torquato, S., 2002, Random Heterogeneous Materials, Springer, New York.
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M. S., Chen, G., and Ren, Z., 2008, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, 320(5876), pp. 634–638. [CrossRef] [PubMed]
Chung, S. Y., Bloking, J. T., and Chiang, Y. M., 2002, “Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes,” Nature Mater., 1(2), pp. 123–128. [CrossRef]
Ron, M., Gruen, D., Mendelsohn, M., and Sheet, I., 1980, “Preparation and Properties of Porous Metal Hydride Compacts,” J. Less Common Met., 74(2), pp. 445–448. [CrossRef]
Hsieh, T.-Y., Yang, J.-Y., and Hong, Z.-C., 2009, “Thermal Conductivity Modeling of Compacted Type Nanocomposites,” J. Appl. Phys., 106(2), p. 023528. [CrossRef]
Wang, X., Yang, Y., and Zhu, L., 2011, “Effect of Grain Sizes and Shapes on Phonon Thermal Conductivity of Bulk Thermoelectric Materials,” J. Appl. Phys., 110(2), p. 024312. [CrossRef]
Jeng, M.-S., Yang, R., Song, D., and Chen, G., 2008, “Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation,” ASME J. Heat Transfer, 130(4), p. 042410. [CrossRef]
Hoylman, D. J., 1970, “The Densest Lattice Packing of Tetrahedra,” Bull. Am. Math. Soc., 76(1), pp. 135–137. [CrossRef]
Chen, E. R., 2008, “A Dense Packing of Regular Tetrahedra,” Discrete Comput. Geom., 40(2), pp. 214–240. [CrossRef]
Haji-Akbari, A., Engel, M., Keys, A. S., Zheng, X., Petschek, R. G., Palffy-Muhoray, P., and Glotzer, S. C., 2009, “Disordered, Quasicrystalline and Crystalline Phases of Densely Packed Tetrahedra,” Nature (London), 462(7274), pp. 773–777. [CrossRef]
Torquato, S., and Jiao, Y., 2009, “Dense Packings of the Platonic and Archimedean Solids,” Nature (London), 460(7257), pp. 876–879. [CrossRef]
Hales, T. C., 2005, “A Proof of the Kepler Conjecture,” Ann. Math., 162(3), pp. 1065–1185. [CrossRef]
Donev, A., Stillinger, F. H., Chaikin, P. M., and Torquato, S., 2004, “Unusually Dense Crystal Packings of Ellipsoids,” Phys. Rev. Lett., 92(25), p. 255506. [CrossRef] [PubMed]
Torquato, S., and Jiao, Y., 2009, “Dense Packings of Polyhedra: Platonic and Archimedean Solids,” Phys. Rev. E, 80(4), p. 041104. [CrossRef]
Torquato, S., and Jiao, Y., 2010, “Exact Constructions of a Family of Dense Periodic Packings of Tetrahedra,” Phys. Rev. E, 81(4), p. 041310. [CrossRef]
Torquato, S., Truskett, T. M., and Debenedetti, P. G., 2000, “Is Random Close Packing of Spheres Well Defined?,” Phys. Rev. Lett., 84(10), pp. 2064–2067. [CrossRef] [PubMed]
Mailman, M., Schreck, C. F., O'Hern, C. S., and Chakraborty, B., 2009, “Jamming in Systems Composed of Frictionless Ellipse-Shaped Particles,” Phys. Rev. Lett., 102(25), p. 255501. [CrossRef] [PubMed]
O'Hern, C. S., Silbert, L. E., Liu, A. J., and Nagel, S. R., 2003, “Jamming at Zero Temperature and Zero Applied Stress: The Epitome of Disorder,” Phys. Rev. E, 68(1), p. 011306. [CrossRef]
Smith, K. C., Alam, M., and Fisher, T. S., 2010, “Athermal Jamming of Soft Frictionless Platonic Solids,” Phys. Rev. E, 82(5), p. 051304. [CrossRef]
Smith, K. C., Mukherjee, P. P., and Fisher, T. S., 2012, “Columnar Ordering in Jammed LiFePO4 Cathodes: Ion Transport Catastrophe and Its Mitigation,” Phys. Chem. Chem. Phys., 14(19), pp. 7040–7050. [CrossRef]
Smith, K. C., and Fisher, T. S., 2012, “Models for Metal Hydride Particle Shape, Packing, and Heat Transfer,” Int. J. Hydrogen Energy, 37(18), pp. 13417–13428. [CrossRef]
Smith, K. C., Fisher, T. S., and Alam, M., 2011, “Isostaticity of Constraints in Amorphous Jammed Systems of Soft Frictionless Platonic Solids,” Phys. Rev. E, 84, p. 030301. [CrossRef]
Smith, K. C., and Fisher, T. S., “Conduction in Jammed Systems of Tetrahedra,” ASME J. Heat Transfer (submitted), ArXiv eprint No. arXiv:1206.2990.
Bishop, K. J. M., Wilmer, C. E., Soh, S., and Grzybowski, B. A., 2009, “Nanoscale Forces and Their Uses in Self-Assembly,” Small, 5(14), pp. 1600–1630. [CrossRef] [PubMed]
Min, Y., Akbulut, M., Kristiansen, K., Golan, Y., and Israelachvili, J., 2008, “The Role of Interparticle and External Forces in Nanoparticle Assembly,” Nature Mater., 7(7), pp. 527–538. [CrossRef]
Lois, G., Blawzdziewicz, J., and O'Hern, C. S., 2008, “Jamming Transition and New Percolation Universality Classes in Particulate Systems With Attraction,” Phys. Rev. Lett., 100(2), p. 028001. [CrossRef] [PubMed]
Gilabert, F. A., Roux, J.-N., and Castellanos, A., 2007, “Computer SImulation of Model Cohesive Powders: Influence of Assembling Procedure and Contact Laws on Low Consolidation States,” Phys. Rev. E, 75(1), p. 011303. [CrossRef]
Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A., 2000, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices,” Science, 287(5460), pp. 1989–1992. [CrossRef] [PubMed]
Talapin, D. V., Shevchenko, E. V., Bodnarchuk, M. I., Ye, X., Chen, J., and Murray, C. B., 2009, “Quasicrystalline Order in Self-Assembled Binary Nanoparticle Superlattices,” Nature (London), 461(7266), pp. 964–967. [CrossRef]
Shevchenko, E. V., Talapin, D. V., Murray, C. B., and O'Brien, S., 2006, “Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices,” J. Am. Chem. Soc., 128(11), pp. 3620–3637. [CrossRef] [PubMed]
Disch, S., Wetterskog, E., Hermann, R. P., Salazar-Alvarez, G., Busch, P., Bruckel, T., Bergstrom, L., and Kamali, S., 2011, “Shape Induced Symmetry in Self-Assembled Mesocrystals of Iron Oxide Nanocubes,” Nano Lett., 11(4), pp. 1651–1656. [CrossRef] [PubMed]
Li, F., Delo, S., and Stein, A., 2007, “Disassembly and Self-Reassembly in Periodic Nanostructures: A Face-Centered-to-Simple-Cubic Transformation,” Angew. Chem.Int. Ed., 46(35), pp. 6666–6669. [CrossRef]
Demortiere, A., Launois, P., Goubet, N., Albouy, P.-A., and Petit, C., 2008, “Shape-Controlled Platinum Nanocubes and Their Assembly Into Two-Dimensional and Three-Dimensional Superlattices,” J. Phys. Chem. B, 112(46), pp. 14583–14592. [CrossRef] [PubMed]
Henzie, J., Grunwald, M., Widmer-Cooper, A., Geissler, P. L., and Yang, P., 2012, “Self-Assembly of Uniform Polyhedral Silver Nanocrystals Into Densest Packings and Exotic Superlattices,” Nature Mater., 11(2), pp. 131–137. [CrossRef]
Volkov, N., Lyubartsev, A., and Bergstrom, L., 2012, “Phase Transitions and Thermodynamic Properties of Dense Assemblies of Truncated Nanocubes and Cuboctahedra,” Nanoscale, 4(15), pp. 4765–4771. [CrossRef] [PubMed]
Buehler, M. J., 2006, “Mesoscale Modeling of Mechanics of Carbon Nanotubes: Self Assembly, Self-Folding, and Fracture,” J. Mater. Res., 21(11), pp. 2855–2869. [CrossRef]
Zhigilei, L. V., Wei, C., and Srivastava, D., 2005, “Mesoscopic Model for Dynamic Simulations of Carbon Nanotubes,” Phys. Rev. B, 71(16), p. 165417. [CrossRef]
Lu, W., Ding, Y., Chen, Y., Wang, Z. L., and Fang, J., 2005, “Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth,” J. Am. Chem. Soc., 127(28), pp. 10112–10116. [CrossRef] [PubMed]
Allen, M. P., and Tildesley, D. J., 1989, Computer Simulation of Liquids, Clarendon, New York.
Baruchel, J., Maire, E., and Buffiere, J.-Y., 2000, X-Ray Tomography in Material Science, Hermes Science, Paris.
Sezgin, M., and Sankur, B. l., 2004, “Survey Over Image Thresholding Techniques and Quantitative Performance Evaluation,” J. Electron. Imag., 13(1), pp. 146–168. [CrossRef]
Faessel, M., and Jeulin, D., 2010, “Segmentation of 3D Microtomographic Images of Granular Materials With the Stochastic Watershed,” J. Microsc., 239(1), pp. 17–31. [CrossRef] [PubMed]
Garcia, R. E., Reid, A. C. E., Langer, S. A., and Carter, W. C., 2005, Microstructural Modeling of Multifunctional Material Properties: The OOF Project, in Continuum Scale Simulation of Engineering Materials: Fundamentals-Microstructures-Process Applications, Wiley-VCH, Berlin, pp. 573–587.
Maxwell, J. C., 1873, Treatise on Electricity and Magnetism, Clarendon, Oxford.
Rayleigh, L., 1892, “On the Influence of Obstacles Arranged in Rectangular Order on the Properties of a Medium,” Philos. Mag., 34(211), pp. 481–502. [CrossRef]
Landauer, R., 1952, “The Electrical Resistance of Binary Metallic Mixtures,” J. Appl. Phys., 23(7), pp. 779–784. [CrossRef]
Sen, A. K., and Torquato, S., 1989, “Effective Conductivity of Anisotropic Two-Phase Composite Media,” Phys. Rev. B, 39(7), pp. 4504–4515. [CrossRef]
Torquato, S., 1985, “Effective Electrical Conductivity of Two-Phase Disordered Composite Media,” J. Appl. Phys., 58(10), pp. 3790–3797. [CrossRef]
Torquato, S., 1986, “Bulk Properties of Two-Phase Disordered Media. III. New Bounds on the Effective Conductivity of Dispersions of Penetrable Spheres,” J. Chem. Phys., 84(11), pp. 6345–6359. [CrossRef]
Choy, T. C., 1999, Effective Medium Theory: Principles and Applications, Clarendon, Oxford.
Milton, G., 1985, “The Coherent Potential Approximation is a Realizable Effective Medium Scheme,” Commun. Math. Phys., 99(4), pp. 463–500. [CrossRef]
Yonezawa, F., and Cohen, M., 1983, “Granular Effective Medium Approximation,” J. Appl. Phys., 54(6), pp. 2895–2899. [CrossRef]
Nan, C.-W., Birringer, R., Clarke, D. R., and Gleiter, H., 1997, “Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance,” J. Appl. Phys., 81(10), pp. 6692–6699. [CrossRef]
Hatta, H., and Taya, M., 1986, “Thermal Conductivity of Coated Filler Composites,” J.Appl. Phys., 59(6), pp. 1851–1860. [CrossRef]
Dunn, M. L., and Taya, M., 1993, “The Effective Thermal Conductivity of Composites With Coated Reinforcement and the Application to Imperfect Interfaces,” J. Appl. Phys., 73(4), pp. 1711–1722. [CrossRef]
Nan, C.-W., Liu, G., Lin, Y., and Li, M., 2004, “Interface Effect on Thermal Conductivity of Carbon Nanotube Composites,” Appl. Phys. Lett., 85(16), pp. 3549–3551. [CrossRef]
Minnich, A., and Chen, G., 2007, “Modified Effective Medium Formulation for the Thermal Conductivity of Nanocomposites,” Appl. Phys. Lett., 91(7), p. 073105. [CrossRef]
Zhang, Y., Mehta, R. J., Belley, M., Han, L., Ramanath, G., and Borca-Tasciuc, T., 2012, “Lattice Thermal Conductivity Diminution and High Thermoelectric Power Factor Retention in Nanoporous Macroassemblies of Sulfur-Doped Bismuth Telluride Nanocrystals,” Appl. Phys. Lett., 100(19), p. 193113. [CrossRef]
Gharagozloo, P. E., and Goodson, K. E., 2010, “Aggregate Fractal Dimensions and Thermal Conduction in Nanofluids,” J. Appl. Phys., 108(7), p. 074309. [CrossRef]
Hashin, Z., and Shtrikman, S., 1962, “A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials,” J. Appl. Phys., 33(10), pp. 3125–3131. [CrossRef]
Torquato, S., 1991, “Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties,” ASME Appl. Mech. Rev., 44(2), pp. 37–76. [CrossRef]
Bodla, K. K., Murthy, J. Y., and Garimella, S. V., 2010, “Microtomography-Based Simulation of Transport Through Open-Cell Metal Foams,” Numer. Heat Transfer, Part A, 58(7), pp. 527–544. [CrossRef]
Singh, D., Murthy, J. Y., and Fisher, T. S., 2008, “Thermal Transport in Finite-Sized Nanocomposites,” ASME Conf. Proc., Vol. 1, pp. 15–24. [CrossRef]
Duong, H. M., Yamamoto, N., Papavassiliou, D. V., Maruyama, S., and Wardle, B. L., 2009, “Inter-Carbon Nanotube Contact in Thermal Transport of Controlled-Morphology Polymer Nanocomposites,” Nanotechnology, 20(15), p. 155702. [CrossRef] [PubMed]
Jeng, M.-S., Yang, R., Song, D., and Chen, G., 2008, “Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation,” ASME J. Heat Transfer, 130(4), p. 042410. [CrossRef]
Tian, W., and Yang, R., 2007, “Thermal Conductivity Modeling of Compacted Nanowire Composites,” J. Appl. Phys., 101(5), p. 054320. [CrossRef]
Torquato, S., 2010, “Optimal Design of Heterogeneous Materials,” Ann. Rev. Mater. Res., 40(1), pp. 101–129. [CrossRef]
McPhedran, R., and McKenzie, D., 1978, “The Conductivity of Lattices of Spheres. I. The Simple Cubic Lattice,” Proc. R. Soc. London, Ser. A, 359(1696), pp. 45–63. [CrossRef]
Keller, J. B., 1963, “Conductivity of a Medium Containing a Dense Array of Perfectly Conducting Spheres or Cylinders or Nonconducting Cylinders,” J. Appl. Phys., 34(4), pp. 991–993. [CrossRef]
Prasher, R. S., Hu, X. J., Chalopin, Y., Mingo, N., Lofgreen, K., Volz, S., Cleri, F., and Keblinski, P., 2009, “Turning Carbon Nanotubes From Exceptional Heat Conductors Into Insulators,” Phys. Rev. Lett., 102(10), p. 105901. [CrossRef] [PubMed]
Ong, Z.-Y., and Pop, E., 2010, “Molecular Dynamics Simulation of Thermal Boundary Conductance Between Carbon Nanotubes and SiO2,” Phys. Rev. B, 81(15), p. 155408. [CrossRef]
Volkov, A. N., and Zhigilei, L. V., 2010, “Scaling Laws and Mesoscopic Modeling of Thermal Conductivity in Carbon Nanotube Materials,” Phys. Rev. Lett., 104(21), p. 215902. [CrossRef] [PubMed]
Kumar, S., Alam, M. A., and Murthy, J. Y., 2007, “Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics,” ASME J. Heat Transfer, 129(4), pp. 500–508. [CrossRef]
Kumar, S., Alam, M. A., and Murthy, J. Y., 2005, “Thermal Transport in Nanotube Composites for Large-Area Macroelectronics,” ASME Conf. Proc., Vol. 3, pp. 919–927. [CrossRef]
Cola, B. A., Xu, J., Cheng, C., Xu, X., Fisher, T. S., and Hu, H., 2007, “Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces,” J. Appl. Phys., 101(5), p. 054313. [CrossRef]
Marconnet, A. M., Yamamoto, N., Panzer, M. A., Wardle, B. L., and Goodson, K. E., 2011, “Thermal Conduction in Aligned Carbon Nanotube Polymer Nanocomposites With High Packing Density,” ACS Nano, 5(6), pp. 4818–4825. [CrossRef] [PubMed]
Cross, R., Cola, B. A., Fisher, T., Xu, X., Gall, K., and Graham, S., 2010, “A Metallization and Bonding Approach for High Performance Carbon Nanotube Thermal Interface Materials,” Nanotechnology, 21(44), p. 445705. [CrossRef] [PubMed]
McCarthy, P. T., Marinero, E. E., and Fisher, T. S., 2012, “Carbon Nanotube Thermal Interfaces on Gadolinium Foil,” Int. J. Heat Mass Transfer, 55(23–24), pp. 6716–6722. [CrossRef]
Murthy, J. Y., and Mathur, S. R., 2012, “Computational Heat Transfer in Complex Systems: A Review of Needs and Opportunities,” ASME J. Heat Transfer, 134(3), p. 031016. [CrossRef]
Ganapathysubramanian, B., and Zabaras, N., 2007, “Modeling Diffusion in Random Heterogeneous Media: Data-Driven Models, Stochastic Collocation and the Variational Multiscale Method,” J. Comput. Phys., 226(1), pp. 326–353. [CrossRef]
Adams, B. M., Bohnhoff, W. J., Dalbey, K. R., Eddy, J. P., Eldred, M. S., Gay, D. M., Haskell, K., Hough, P. D., and Swiler, L. P., 2009, “DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.0 User's Manual,” Technical Report, Sandia National Laboratories.


Grahic Jump Location
Fig. 1

Combined microstructure and transport modeling framework. The acronyms AGF and MD refer to the techniques of atomistic Green's function and molecular dynamics, respectively.

Grahic Jump Location
Fig. 2

Comparison of microstructures obtained from experiments (SEM micrographs) and modeling. (a) Packing of randomly shaped metal hydride particles [42]. (b) Packing of Bi2Te3 hexagonal platelets, used in thermoelectric applications [59]. (SEM image reprinted with permission from Lu et al., “Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth,” Journal of the American Chemical Society, 127(28), pp. 10112-10116. Copyright 2005 American Chemical Society.) (c) Vertically oriented CNT arrays. (d) Packing of silica spheres drop coated on a substrate. The black edges in the simulated depictions represent the boundaries of the primary periodic cell.

Grahic Jump Location
Fig. 3

Normalized radial distribution function (RDF) for a jammed system of 1000 spheres and 1600 cubes. The decay of the RDF to unity indicates the lack of long-range translational order.

Grahic Jump Location
Fig. 4

Probability density of face-face alignment angles for jammed systems of 400 tetrahedra, icosahedra, and octahedra. Gaussian kernels with a standard deviation of 0.1 deg were employed to estimate the probability density for each system.

Grahic Jump Location
Fig. 5

Schematic of the granular effective medium approximation. The ‘+’ sign indicates the application of the MG-EMA, and ‘°’ indicates a small incremental volume of the inclusion material. The filled black square indicates the initial host material with no inclusions and the gray square indicates the final effective mixture of the host and inclusions.

Grahic Jump Location
Fig. 6

Comparison of the EMA predictions with discretized finite volume calculations of the normalized effective thermal conductivity for packings of 400 and 1600 tetrahedra. (Based on the model of Ref. [44].)

Grahic Jump Location
Fig. 7

Normalized temperature field for the packing of 400 tetrahedra at a volume fraction of 0.611 with a solid-pore thermal conductivity ratio of 103 [44]. The length scale of the temperature field variations is small compared to the system size, indicating the absence of long-range clusters with preferential heat flow.

Grahic Jump Location
Fig. 8

Mean effective conductivity as a function of the solid-pore conductivity ratio κs/κp for a jammed system of randomly shaped faceted metal hydride particles [42]. The error bars represent bounds on the principal values of the conductivity tensor.

Grahic Jump Location
Fig. 9

A schematic of the CNT resistor network model: Rgc represents the contact resistance between the growth substrate and the CNT, Rd represents the diffusive resistance of the CNT, Rcc,line and Rcc,point represent the contact resistance of the line and point contacts between individual CNTs in an array, Rcs,tip and Rcs,line represent the contact resistance of the tip and line contacts between the CNTs and the opposing substrate

Grahic Jump Location
Fig. 10

The variation of the thermal contact resistance (CNT tips-opposing substrate) of 5 μm tall CNT arrays with applied pressure. The filled red squares and open red triangles, respectively, denote the simulation and experimental data for the variation of the thermal contact resistance with pressure. The blue circles denote the fraction of CNTs in contact with the opposing substrate obtained from the simulations.

Grahic Jump Location
Fig. 11

Comparison of different transport modeling techniques for heterogeneous materials with varying computational complexity and microstructural detail required

Grahic Jump Location
Fig. 12

Variation of the jamming threshold volume fraction of spheres with the system size. The error bars indicate the standard deviation observed over multiple random realizations of this system.

Grahic Jump Location
Fig. 13

Mean and standard deviations in the thermal contact resistance for arrays of 50, 100 and 200 CNTs under varying pressure. The error bars indicate the standard deviation observed over multiple random realizations (∼10) of these systems.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In