0
Research Papers: Experimental Techniques

Tuning Phonon Transport: From Interfaces to Nanostructures

[+] Author and Article Information
Pamela M. Norris

e-mail: pamela@virginia.edu

Christopher H. Baker

Department of Mechanical and Aerospace Engineering,
University of Virginia,
122 Engineer's Way,
Charlottesville, VA 22904-4746

The phonon radiation limit is a model that assumes a transmissivity of one for all incident phonons [11], although discussion in this work is limited to the aforementioned mismatch models and their derivatives.

Interface stability in certain material systems may also arise due to slow diffusion kinetics [49]. Nevertheless, for present purposes, thermodynamics offers a sufficient explanation linking interfaces and bond strengths.

1Corresponding author.

Manuscript received October 17, 2012; final manuscript received December 23, 2012; published online May 16, 2013. Assoc. Editor: Leslie Phinney.

J. Heat Transfer 135(6), 061604 (May 16, 2013) (13 pages) Paper No: HT-12-1575; doi: 10.1115/1.4023584 History: Received October 17, 2012; Revised December 23, 2012

A wide range of modern technological devices utilize materials structured at the nanoscale to improve performance. The efficiencies of many of these devices depend on their thermal transport properties; whether a high or low conductivity is desirable, control over thermal transport is crucial to the continued development of device performance. Here we review recent experimental, computational, and theoretical studies that have highlighted potential methods for controlling phonon-mediated heat transfer. We discuss those parameters that affect thermal boundary conductance, such as interface morphology and material composition, as well as the emergent effects due to several interfaces in close proximity, as in a multilayered structure or superlattice. Furthermore, we explore future research directions as well as some of the challenges related to improving device thermal performance through the implementation of phonon engineering techniques.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Pop, E., 2010, “Energy Dissipation and Transport in Nanoscale Devices,” Nano Res., 3, pp. 147–169. [CrossRef]
Vining, C. B., 2009, “An Inconvenient Truth About Thermoelectrics,” Nat. Mater., 8, pp. 83–85. [CrossRef]
Williams, B. S., 2007, “Terahertz Quantum-Cascade Lasers,” Nat. Photon., 1, pp. 517–525. [CrossRef]
Wong, H.-S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, B., Asheghi, M., and Goodson, K. E., 2010, “Phase Change Memory,” Proc. IEEE, 98, pp. 2201–2227. [CrossRef]
Kim, W., Wang, R., and Majumdar, A., 2007, “Nanostructuring Expands Thermal Limits,” Nanotoday, 2, pp. 40–47. [CrossRef]
Chen, G., 2005, Nanoscale Energy Transport and Conversion, Oxford University Press, Oxford.
Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., and Phillpot, S. R., 2003, “Nanoscale Thermal Transport,” J. Appl. Phys., 93, pp. 793–818. [CrossRef]
Kapitza, P. L., 1941, “The Study of Heat Transfer in Helium II,” J. Phys. (USSR), 4, pp. 181–210.
Little, W. A., 1959, “The Transport of Heat Between Dissimilar Solids at Low Temperatures,” Can. J. Phys., 37, pp. 334–349. [CrossRef]
Swartz, E. T., and Pohl, R. O., 1989, “Thermal Boundary Resistance,” Rev. Mod. Phys., 61, pp. 605–668. [CrossRef]
Stoner, R. J., and Maris, H. J., 1993, “Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K,” Phys. Rev. B, 48, pp. 16373–16387. [CrossRef]
Beechem, T., Duda, J. C., Hopkins, P. E., and Norris, P. M., 2010, “Contribution of Optical Phonons to Thermal Boundary Conductance,” Appl. Phys. Lett., 97, p. 061907. [CrossRef]
Duda, J. C., Beechem, T. E., Smoyer, J. L., Norris, P. M., and Hopkins, P. E., 2010, “Role of Dispersion on Phononic Thermal Boundary Conductance,” J. Appl. Phys., 108, p. 073515. [CrossRef]
Reddy, P., Castelino, K., and Majumdar, A., 2005, “Diffuse Mismatch Model of Thermal Boundary Conductance Using Exact Phonon Dispersion,” Appl. Phys. Lett., 87, p. 211908. [CrossRef]
Hopkins, P. E., and Norris, P. M., 2007, “Effects of Joint Vibrational States on Thermal Boundary Conductance,” Nanoscale Microscale Thermophys. Eng., 11, pp. 247–257. [CrossRef]
Hopkins, P. E., 2009, “Multiple Phonon Processes Contributing to Inelastic Scattering During Thermal Boundary Conductance at Solid Interfaces,” J. Appl. Phys., 106, p. 013528. [CrossRef]
Hopkins, P. E., Duda, J. C., and Norris, P. M., 2011, “Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance,” ASME J. Heat Transfer, 133(6), p. 062401. [CrossRef]
Beechem, T., Graham, S., Hopkins, P., and Norris, P., 2007, “Role of Interface Disorder on Thermal Boundary Conductance Using a Virtual Crystal Approach,” Appl. Phys. Lett., 90, p. 054104. [CrossRef]
Hopkins, P. E., Norris, P. M., Stevens, R. J., Beechem, T. E., and Graham, S., 2008, “Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon Interface,” ASME J. Heat Transfer, 130(6), p. 062402. [CrossRef]
Hopkins, P. E., Phinney, L. M., Serrano, J. R., and Beechem, T. E., 2010, “Effects of Surface Roughness and Oxide Layer on the Thermal Boundary Conductance at Aluminum/Silicon Interfaces,” Phys. Rev. B, 82, p. 085307. [CrossRef]
Hopkins, P. E., Duda, J. C., Clark, S. P., Hains, C. P., Rotter, T. J., Phinney, L. M., and Balakrishnan, G., 2011, “Effect of Dislocation Density on Thermal Boundary Conductance Across GaSb/GaAs Interfaces,” Appl. Phys. Lett., 98, p. 161913. [CrossRef]
Hopkins, P. E., Duda, J. C., Petz, C. W., and Floro, J. A., 2011, “Controlling Thermal Conductance Through Quantum Dot Roughening at Interfaces,” Phys. Rev. B, 84, p. 035438. [CrossRef]
Stevens, R. J., Smith, A. N., and Norris, P. M., 2005, “Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique,” ASME J. Heat Transfer, 127(3), pp. 315–322. [CrossRef]
Lyeo, H.-K., and Cahill, D. G., 2006, “Thermal Conductance of Interfaces Between Highly Dissimilar Materials,” Phys. Rev. B, 73, p. 144301. [CrossRef]
Twu, C.-J., and Ho, J.-R., 2003, “Molecular-Dynamics Study of Energy Flow and the Kapitza Conductance Across an Interface With Imperfection Formed by Two Dielectric Thin Films,” Phys. Rev. B, 67, p. 205422. [CrossRef]
Stevens, R. J., Zhigilei, L. V., and Norris, P. M., 2007, “Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations,” Int. J. Heat Mass Transfer, 50, pp. 3977–3989. [CrossRef]
Hu, M., Keblinski, P., and Schelling, P. K., 2009, “Kapitza Conductance of Silicon–Amorphous Polyethylene Interfaces by Molecular Dynamics Simulations,” Phys. Rev. B, 79, p. 104305. [CrossRef]
Landry, E. S., and McGaughey, A. J. H., 2009, “Thermal Boundary Resistance Predictions From Molecular Dynamics Simulations and Theoretical Calculations,” Phys. Rev. B, 80, p. 165304. [CrossRef]
Lyver, IV, J. W., and Blaisten-Barojas, E., 2009, “Effects of the Interface Between Two Lennard-Jones Crystals on the Lattice Vibrations: A Molecular Dynamics Study,” J. Phys.: Condens. Matter, 21, p. 345402. [CrossRef]
Wang, S., and Liang, X., 2010, “Thermal Conductivity and Interfacial Thermal Resistance in Bilayered Nanofilms by Nonequilibrium Molecular Dynamics Simulations,” Int. J. Thermophys., 31, pp. 1935–1944. [CrossRef]
Ju, S., Liang, X., and Wang, S., 2010, “Investigation of Interfacial Thermal Resistance of Bi-Layer Nanofilms by Nonequilibrium Molecular Dynamics,” J. Phys. D: Appl. Phys., 43, p. 085407. [CrossRef]
Shen, M., Evans, W. J., Cahill, D., and Keblinski, P., 2011, “Bonding and Pressure–Tunable Interfacial Thermal Conductance,” Phys. Rev. B, 84, p. 195432. [CrossRef]
Shin, S., Kaviany, M., Desai, T., and Bonner, R., 2010, “Roles of Atomic Restructuring in Interfacial Phonon Transport,” Phys. Rev. B, 82, p. 081302. [CrossRef]
Duda, J. C., English, T. S., Piekos, E. S., Soffa, W. A., Zhigilei, L. V., and Hopkins, P. E., 2011, “Implications of Cross-Species Interactions on the Temperature Dependence of Kapitza Conductance,” Phys. Rev. B, 84, p. 193301. [CrossRef]
English, T. S., Duda, J. C., Smoyer, J. L., Jordan, D. A., Norris, P. M., and Zhigilei, L. V., 2012, “Enhancing and Tuning Phonon Transport at Vibrationally Mismatched Solid–Solid Interfaces,” Phys. Rev. B, 85, p. 035438. [CrossRef]
Hopkins, P. E., Salaway, R. N., Stevens, R. J., and Norris, P. M., 2007, “Temperature-Dependent Thermal Boundary Conductance at Al/Al2O3 and Pt/Al2O3 Interfaces,” Int. J. Thermophys., 28, pp. 947–957. [CrossRef]
Hopkins, P. E., Norris, P. M., and Stevens, R. J., 2008, “Influence of Inelastic Scattering at Metal-Dielectric Interfaces,” ASME J. Heat Transfer, 130(2), p. 022401. [CrossRef]
Luo, T., and Lloyd, J. R., 2010, “Non-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au-SAM-Au Junctions,” Int. J. Heat Mass Transfer, 53, pp. 1–11. [CrossRef]
Luo, T., and Lloyd, J. R., 2010, “Equilibrium Molecular Dynamics Study of Lattice Thermal Conductivity/Conductance of Au-SAM-Au Junctions,” ASME J. Heat Transfer, 132(3), p. 032401. [CrossRef]
Luo, T., and Lloyd, J. R., 2011, “Molecular Dynamics Study of Thermal Transport in GaAs-Self-Assembly Monolayer-GaAs Junctions With Ab Initio Characterization of Thiol-GaAs Bonds,” J. Appl. Phys., 109, p. 034301. [CrossRef]
Duda, J. C., Norris, P. M., and Hopkins, P. E., 2011, “On the Linear Temperature Dependence of Phonon Thermal Boundary Conductance in the Classical Limit,” ASME J. Heat Transfer, 133(7), p. 074501. [CrossRef]
Holland, M. G., 1963, “Analysis of Lattice Thermal Conductivity,” Phys. Rev., 132, pp. 2461–2471. [CrossRef]
Slack, G. A., and Galginaitis, S., 1964, “Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe,” Phys. Rev., 133, pp. A253–A268. [CrossRef]
Ward, A., and Broido, D. A., 2010, “Intrinsic Phonon Relaxation Times From First-Principles Studies of the Thermal Conductivities of Si and Ge,” Phys. Rev. B, 81, p. 085205. [CrossRef]
Prasher, R., 2009, “Acoustic Mismatch Model for Thermal Contact Resistance of van der Waals Contacts,” Appl. Phys. Lett., 94, p. 041905. [CrossRef]
Young, D. A., and Maris, H. J., 1989, “Lattice-Dynamical Calculation of the Kapitza Resistance Between fcc Lattices,” Phys. Rev. B, 40, pp. 3685–3693. [CrossRef]
Persson, B. N. J., Volokitin, A. I., and Ueba, H., 2011, “Phononic Heat Transfer Across an Interface: Thermal Boundary Resistance,” J. Phys.: Condens. Matter, 23, p. 045009. [CrossRef] [PubMed]
Howe, J. M., 1997, Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-Vapor, Solid-Liquid, and Solid-Solid Interfaces, John Wiley, New York.
Porter, D. A., and Easterling, K. E., 1981, Phase Transformations in Metals and Alloys, Chapman and Hall, Englewood Cliffs, NJ.
Ong, Z.-Y., and Pop, E., 2010, “Molecular Dynamics Simulation of Thermal Boundary Conductance Between Carbon Nanotubes and SiO2,” Phys. Rev. B,81, p. 155408. [CrossRef]
Li, X., and Yang, R., 2012, “Effect of Lattice Mismatch on Phonon Transmission and Interface Thermal Conductance Across Dissimilar Material Interfaces,” Phys. Rev. B, 86, p. 054305. [CrossRef]
O'Brien, P. J., Shenogin, S., Liu, J., Chow, P. K., Laurencin, D., Mutin, P. H., Yamaguchi, M., Keblinski, P., and Ramanath, G., 2013, “Bonding-Induced Thermal Conductance Enhancement at Inorganic Heterointerfaces Using Nanomolecular Monolayers,” Nat. Mater., 12, pp. 118–122. [CrossRef]
Wang, Y., and Keblinski, P., 2011, “Role of Wetting and Nanoscale Roughness on Thermal Conductance at Liquid–Solid Interface,” Appl. Phys. Lett., 99, p. 073112. [CrossRef]
Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G., and Braun, P. V., 2012, “Effects of Chemical Bonding on Heat Transport Across Interfaces,” Nat. Mater., 11, pp. 502–506. [CrossRef]
Collins, K. C., Chen, S., and Chen, G., 2010, “Effects of Surface Chemistry on Thermal Conductance at Aluminum-Diamond Interfaces,” Appl. Phys. Lett., 97, p. 083102. [CrossRef]
Hopkins, P. E., Baraket, M., Barnat, E. V., Beechem, T. E., Kearney, S. P., Duda, J. C., Robinson, J. T., and Walton, S. G., 2012, “Manipulating Thermal Conductance at Metal-Graphene Contacts via Chemical Functionalization,” Nano Lett., 12, pp. 590–595. [CrossRef]
Liu, H., Zeng, H., Pan, T., Huang, W., and Lin, Y., 2012, “Pressure Dependency of Thermal Boundary Conductance of Carbon Nanotube/Silicon Interface: A Molecular Dynamics Study,” J. Appl. Phys., 112, p. 053501. [CrossRef]
Hsieh, W.-P., Lyons, A. S., Pop, E., Keblinski, P., and Cahill, D. G., 2011, “Pressure Tuning of the Thermal Conductance of Weak Interfaces,” Phys. Rev. B, 84, p. 184107. [CrossRef]
Zhao, H., and Freund, J. B., 2009, “Phonon Scattering at a Rough Interface Between Two fcc Lattices,” J. Appl. Phys., 105, p. 013515. [CrossRef]
Kechrakos, D., 1990, “The Phonon Boundary Scattering Cross Section at Disordered Crystalline Interfaces: A Simple Model,” J. Phys.: Condens. Matter, 2, pp. 2637–2652. [CrossRef]
Kechrakos, D., 1991, “The Role of Interface Disorder in the Thermal Boundary Conductivity Between Two Crystals,” J. Phys.: Condens. Matter, 3, pp. 1443–1452. [CrossRef]
Fagas, G., Kozorezov, A. G., Lambert, C. J., Wigmore, J. K., Peacock, A., Peolaert, A., and den Hartog, R., 1999, “Lattice Dynamics of a Disordered Solid-Solid Interface,” Phys. Rev. B, 60, pp. 6459–6464. [CrossRef]
Sun, H., and Pipe, K. P., 2012, “Perturbation Analysis of Acoustic Wave Scattering at Rough Solid-Solid Interfaces,” J. Appl. Phys., 111, p. 023510. [CrossRef]
Duda, J. C., and Hopkins, P. E., 2012, “Systematically Controlling Kapitza Conductance via Chemical Etching,” Appl. Phys. Lett., 100, p. 111602. [CrossRef]
Liang, X.-G., and Sun, L., 2005, “Interface Structure Influence on Thermal Resistance Across Double-Layered Nanofilms,” Microscale Thermophys. Eng., 9, pp. 295–304. [CrossRef]
Choi, W. I., Kim, K., and Narumanchi, S., 2012, “Thermal Conductance at Atomically Clean and Disordered Silicon/Aluminum Interfaces: A Molecular Dynamics Simulation Study,” J. Appl. Phys., 112, p. 054305. [CrossRef]
Hopkins, P. E., and Norris, P. M., 2006, “Thermal Boundary Conductance Response to a Change in Cr/Si Interfacial Properties,” Appl. Phys. Lett., 89, p. 131909. [CrossRef]
Kozorezov, A. G., Wigmore, J. K., Erd, C., Peacock, A., and Poelaert, A., 1998, “Scattering-Mediated Transmission and Reflection of High-Frequency Phonons at a Nonideal Solid-Solid Interface,” Phys. Rev. B, 57, pp. 7411–7414. [CrossRef]
Prasher, R. S., and Phelan, P. E., 2001, “A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance,” ASME J. Heat Transfer, 123(1), pp. 105–112. [CrossRef]
Hopkins, P. E., Hattar, K., Beechem, T., Ihlefeld, J. F., Medlin, D. L., and Piekos, E. S., 2011, “Reduction in Thermal Boundary Conductance Due to Proton Implantation in Silicon and Sapphire,” Appl. Phys. Lett., 98, p. 231901. [CrossRef]
Hopkins, P. E., Hattar, K., Beechem, T., Ihlefeld, J. F., Medlin, D. L., and Piekos, E. S., 2012, “Addendum: Reduction in Thermal Boundary Conductance Due to Proton Implantation in Silicon and Sapphire,” Appl. Phys. Lett., 101, p. 099903. [CrossRef]
Norris, P. M., Smoyer, J. L., Duda, J. C., and Hopkins, P. E., 2012, “Prediction and Measurement of Thermal Transport Across Interfaces Between Isotropic Solids and Graphitic Materials,” ASME J. Heat Transfer, 134(2), p. 020910. [CrossRef]
Kato, R., and Hatta, I., 2008, “Thermal Conductivity and Interfacial Thermal Resistance: Measurements of Thermally Oxidized SiO2 Films on a Silicon Wafer Using a Thermo-Reflectance Technique,” Int. J. Thermophys., 29, pp. 2062–2071. [CrossRef]
Monachon, C., Hojeij, M., and Weber, L., 2011, “Influence of Sample Processing Parameters on Thermal Boundary Conductance Value in an Al/AlN System,” Appl. Phys. Lett., 98, p. 091905. [CrossRef]
Huberman, M. L., and Overhauser, A. W., 1994, “Electronic Kapitza Conductance at a Diamond-Pb Interface,” Phys. Rev. B, 50, pp. 2865–2873. [CrossRef]
Sergeev, A. V., 1998, “Electronic Kapitza Conductance Due to Inelastic Electron-Boundary Scattering,” Phys. Rev. B, 58, pp. R10199–R10202. [CrossRef]
Mahan, G. D., 2009, “Kapitza Thermal Resistance Between a Metal and a Nonmetal,” Phys. Rev. B, 79, p. 075408. [CrossRef]
Hopkins, P. E., and Norris, P. M., 2007, “Substrate Influence in Electron–Phonon Coupling Measurements in Thin Au Films,” Appl. Surf. Sci., 253, pp. 6289–6294. [CrossRef]
Hopkins, P. E., Kassebaum, J. L., and Norris, P. M., 2009, “Effects of Electron Scattering at Metal-Nonmetal Interfaces on Electron-Phonon Equilibration in Gold Films,” J. Appl. Phys., 105, p. 023710. [CrossRef]
Kazan, M., 2011, “Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application of InN/GaN Superlattice,” ASME J. Heat Transfer, 133(11), p. 112401. [CrossRef]
Henry, A. S., and Chen, G., 2008, “Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics,” J. Comput. Theor. Nanosci., 5, pp. 141–152.
Minnich, A. J., Johnson, J. A., Schmidt, A. J., Esfarjani, K., Dresselhaus, M. S., Nelson, K. A., and Chen, G., 2011, “Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths,” Phys. Rev. Lett., 107, p. 095901. [CrossRef] [PubMed]
Chen, G., and Neagu, M., 1997, “Thermal Conductivity and Heat Transfer in Superlattices,”Appl. Phys. Lett., 71, pp. 2761–2763. [CrossRef]
Chen, G., 1998, “Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices,” Phys. Rev. B, 57, pp. 14958–14973. [CrossRef]
Singh, D., Murthy, J. Y., and Fisher, T. S., 2011, “Effect of Phonon Dispersion on Thermal Conduction Across Si/Ge Interfaces,” ASME J. Heat Transfer, 133(12), p. 122401. [CrossRef]
Garg, J., Bonini, N., and Marzari, N., 2011, “High Thermal Conductivity in Short-Period Superlattices,” Nano Lett., 11, pp. 5135–5141. [CrossRef]
Hyldgaard, P., and Mahan, G. D., 1997, “Phonon Superlattice Transport,” Phys. Rev. B, 56, pp. 10754–10757. [CrossRef]
Tamura, S.-I., Tanaka, Y., and Maris, H. J., 1999, “Phonon Group Velocity and Thermal Conduction in Superlattices,” Phys. Rev. B, 60, pp. 2627–2630. [CrossRef]
Simkin, M. V., and Mahan, G. D., 2000, “Minimum Thermal Conductivity of Superlattices,” Phys. Rev. Lett., 84, pp. 927–930. [CrossRef]
Ren, S.-F., Cheng, W., and Chen, G., 2006, “Lattice Dynamics Investigations of Phonon Thermal Conductivity of Si/Ge Superlattices With Rough Interfaces,” J. Appl. Phys., 100, p. 103505. [CrossRef]
Hepplestone, S. P., and Srivastava, G. P., 2010, “Phononic Gaps in Thin Semiconductor Superlattices,” J. Appl. Phys., 107, p. 043504. [CrossRef]
Nika, D. L., Pokatilov, E. P., Balandin, A. A., Fomin, V. M., Rastelli, A., and Schmidt, O. G., 2011, “Reduction of Lattice Thermal Conductivity in One-Dimensional Quantum-Dot Superlattices Due to Phonon Filtering,” Phys. Rev. B, 84, p. 165415. [CrossRef]
Ren, S. Y., and Dow, J. D., 1982, “Thermal Conductivity of Superlattices,” Phys. Rev. B, 25, pp. 3750–3755. [CrossRef]
Volz, S., Saulnier, J. B., Chen, G., and Beauchamp, P., 2000, “Computation of Thermal Conductivity of Si/Ge Superlattices by Molecular Dynamics Techniques,” Microelectron. J., 31, pp. 815–819. [CrossRef]
Daly, B. C., Maris, H. J., Imamura, K., and Tamura, S., 2002, “Molecular Dynamics Calculation of the Thermal Conductivities of Superlattices,” Phys. Rev. B, 66, p. 024301. [CrossRef]
Chen, Y., Li, D., Lukes, J. R., Ni, Z., and Chen, M., 2005, “Minimum Superlattice Thermal Conductivity From Molecular Dynamics,” Phys. Rev. B, 72, p. 174302. [CrossRef]
McGaughey, A. J. H., Hussein, M. I., Landry, E. S., Kaviany, M., and Hulbert, G. M., 2006, “Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal,” Phys. Rev. B, 74, p. 104304. [CrossRef]
Landry, E. S., Hussein, M. I., and McGaughey, A. J. H., 2008, “Complex Superlattice Unit Cell Designs for Reduced Thermal Conductivity,” Phys. Rev. B, 77, p. 184302. [CrossRef]
Landry, E. S., and McGaughey, A. J. H., 2009, “Effect of Interfacial Species Mixing on Phonon Transport in Semiconductor Superlattices,” Phys. Rev. B, 79, p. 075316. [CrossRef]
Termentzidis, K., Chantrenne, P., and Keblinski, P., 2009, “Nonequilibrium Molecular Dynamics Simulation of the In-Plane Thermal Conductivity of Superlattices With Rough Interfaces,” Phys. Rev. B, 79, p. 214307. [CrossRef]
Chalopin, Y., Esfarjani, K., Henry, A., Volz, S., and Chen, G., 2012, “Thermal Interface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics,” Phys. Rev. B, 85, p. 195302. [CrossRef]
Frachioni, A., and White, B. E., Jr., 2012, “Simulated Thermal Conductivity of Silicon-Based Random Multilayer Thin Films,” J. Appl. Phys., 112, p. 014320. [CrossRef]
Narayanamurti, V., Störmer, H. L., Chin, M. A., Gossard, A. C., and Wiegmann, W., 1979, “Selective Transmission of High-Frequency Phonons by a Superlattice: The ‘Dielectric’ Phonon Filter,” Phys. Rev. Lett., 43, pp. 2012–2016. [CrossRef]
Colvard, C., Gant, T. A., Klein, M. V., Merlin, R., Fischer, R., Morkoc, H., and Gossard, A. C., 1985, “Folded Acoustic and Quantized Optic Phonons in (GaAl)As Superlattices,” Phys. Rev. B, 31, pp. 2080–2091. [CrossRef]
Yamamoto, A., Mishina, T., Masumoto, Y., and Nakayama, M., 1994, “Coherent Oscillation of Zone-Folded Phonon Modes in GaAs-AlAs Superlattices,” Phys. Rev. Lett., 73, pp. 740–743. [CrossRef]
Bartels, A., Dekorsy, T., Kurz, H., and Köhler, K., 1999, “Coherent Zone-Folded Longitudinal Acoustic Phonons in Semiconductor Superlattices: Excitation and Detection,” Phys. Rev. Lett., 82, pp. 1044–1047. [CrossRef]
Yao, T., 1987, “Thermal Properties of AlAs/GaAs Superlattices,” Appl. Phys. Lett., 51, pp. 1798–1800. [CrossRef]
Yu, X. Y., Chen, G., Verma, A., and Smith, J. S., 1995, “Temperature Dependence of Thermophysical Properties of GaAs/AlAs Periodic Structure,” Appl. Phys. Lett., 67, pp. 3554–3556. [CrossRef]
Lee, S.-M., Cahill, D. G., and Venkatasubramanian, R., 1997, “Thermal Conductivity of Si–Ge Superlattices,” Appl. Phys. Lett., 70, pp. 2957–2959. [CrossRef]
Venkatasubramanian, R., 2000, “Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures,” Phys. Rev. B, 61, pp. 3091–3097. [CrossRef]
Song, D. W., Liu, W. L., Zeng, T., Borca-Tasciuc, T., Chen, G., Caylor, J. C., and Sands, T. D., 2000, “Thermal Conductivity of Skutterudite Thin Films and Superlattices,” Appl. Phys. Lett., 77, pp. 3854–3856. [CrossRef]
Borca-Tasciuc, T., Liu, W., Liu, J., Zeng, T., Song, D. W., Moore, C. D., Chen, G., Wang, K. L., Goorsky, M. S., Radetic, T., Gronsky, R., Koga, T., and Dresselhaus, M. S., 2000, “Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices,” Superlattices Microstruct., 28, pp. 199–206. [CrossRef]
Cahill, D. G., Bullen, A., and Lee, S.-M., 2000, “Interface Thermal Conductance and the Thermal Conductivity of Multilayer Thin Films,” High Temp.-High Press., 32, pp. 135–142. [CrossRef]
Borca-Tasciuc, T., Achimov, D., Liu, W. L., Chen, G., Ren, H.-W., Lin, C.-H., and Pei, S. S., 2001, “Thermal Conductivity of InAs/AlSb Superlattices,” Microscale Thermophys. Eng., 5, pp. 225–231. [CrossRef]
Huxtable, S. T., Abramson, A. R., Tien, C.-L., Majumdar, A., LaBounty, C., Fan, X., Zeng, G., Bowers, J. E., Shakouri, A., and Croke, E. T., 2002, “Thermal Conductivity of Si/SiGe and SiGe/SiGe Superlattices,” Appl. Phys. Lett., 80, pp. 1737–1739. [CrossRef]
Chakraborty, S., Kleint, C. A., Heinrich, A., Schneider, C. M., Schumann, J., Falke, M., and Teichert, S., 2003, “Thermal Conductivity in Strain Symmetrized Si/Ge Superlattices on Si(111),” Appl. Phys. Lett., 83, pp. 4184–4186. [CrossRef]
Zhang, Y., Chen, Y., Gong, C., Yang, J., Qian, R., and Wang, Y., 2007, “Optimization of Superlattice Thermoelectric Materials and Microcoolers,” J. Microelectromech. Syst., 16, pp. 1113–1119. [CrossRef]
Duquesne, J.-Y., 2009, “Thermal Conductivity of Semiconductor Superlattices: Experimental Study of Interface Scattering,” Phys. Rev. B, 79, p. 153304. [CrossRef]
Tong, H., Miao, X. S., Cheng, X. M., Wang, H., Zhang, L., Sun, J. J., Tong, F., and Wang, J. H., 2011, “Thermal Conductivity of Chalcogenide Material With Superlatticelike Structure,” Appl. Phys. Lett., 98, p. 101904. [CrossRef]
Capinski, W. S., Maris, H. J., Ruf, T., Cardona, M., Ploog, K., and Katzer, D. S., 1999, “Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique,” Phys. Rev. B, 59, pp. 8105–8113. [CrossRef]
Touzelbaev, M. N., Zhou, P., Venkatasubramanian, R., and Goodson, K. E., 2001, “Thermal Characterization of Bi2Te3/Sb2Te3 Superlattices,” J. Appl. Phys., 90, pp. 763–767. [CrossRef]
Costescu, R. M., Cahill, D. G., Fabreguette, F. H., Sechrist, Z. A., and George, S. M., 2004, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates,” Science, 303, pp. 989–990. [CrossRef]
Koh, Y. K., Cao, Y., Cahill, D. G., and Jena, D., 2009, “Heat-Transport Mechanisms in Superlattices,” Adv. Funct. Mater., 19, pp. 610–615. [CrossRef]
Wang, Y., Liebig, C., Xu, X., and Venkatasubramanian, R., 2010, “Acoustic Phonon Scattering in Bi2Te3/Sb2Te3 Superlattices,” Appl. Phys. Lett., 97, p. 083103. [CrossRef]
Kopf, R. F., Schubert, E. F., Harris, T. D., and Becker, R. S., 1991, “Photoluminescence of GaAs Quantum Wells Grown by Molecular Beam Epitaxy With Growth Interruptions,” Appl. Phys. Lett., 58, pp. 631–633. [CrossRef]
Termentzidis, K., Chantrenne, P., Duquesne, J.-Y., and Saci, A., 2010, “Thermal Conductivity of GaAs/AlAs Superlattices and the Puzzle of Interfaces,” J. Phys.: Condens. Matter, 22, p. 475001. [CrossRef] [PubMed]
Chiritescu, C., Cahill, D. G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., and Zschack, P., 2007, “Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals,” Science, 315, pp. 351–353. [CrossRef]
Goodson, K. E., 2007, “Ordering Up the Minimum Thermal Conductivity of Solids,” Science, 315, pp. 342–343. [CrossRef] [PubMed]
Cheaito, R., Duda, J. C., Beechem, T. E., Hattar, K., Ihlefeld, J. F., Medlin, D. L., Rodriguez, M. A., Campion, M. J., Piekos, E. S., and Hopkins, P. E., 2012, “Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films,” Phys. Rev. Lett., 109, p. 195901. [CrossRef] [PubMed]
Bracht, H., Wehmeier, N., Eon, S., Plech, A., Issenmann, D., Hansen, J. L., Larsen, A. N., Ager, J. W., III, and Haller, E. E., 2012, “Reduced Thermal Conductivity of Isotopically Modulated Silicon Multilayer Structures,” Appl. Phys. Lett., 101, p. 064103. [CrossRef]
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., 2001, “Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit,” Nature, 413, pp. 597–602. [CrossRef]
Harman, T. C., Taylor, P. J., Walsh, M. P., and LaForge, B. E., 2002, “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science, 297, pp. 2229–2232. [CrossRef]
Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., and Majumdar, A., 2006, “Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors,” Phys. Rev. Lett., 96, p. 045901. [CrossRef] [PubMed]
Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., and Chen, G., 2009, “Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects,” Energy Environ. Sci., 2, pp. 466–479. [CrossRef]
Chong, T. C., Shi, L. P., Zhao, R., Tan, P. K., Li, J. M., Lee, H. K., Miao, X. S., Du, A. Y., and Tung, C. H., 2006, “Phase Change Random Access Memory Cell With Superlattice-Like Structure,” Appl. Phys. Lett., 88, p. 122114. [CrossRef]
Simpson, R. E., Fons, P., Kolobov, A. V., Fukaya, T., Krbal, M., Yagi, T., and Tominaga, J., 2011, “Interfacial Phase-Change Memory,” Nat. Nanotechnol., 6, pp. 501–505. [CrossRef]
Lau, W. T., Shen, J.-T., and Fan, S., 2010, “Exponential Suppression of Thermal Conductance Using Coherent Transport and Heterostructures,” Phys. Rev. B, 82, p. 113105. [CrossRef]
Robb, P. D., Finnie, M., and Craven, A. J., 2012, “Characterisation of InAs/GaAs Short Period Superlattices Using Column Ratio Mapping in Aberration-Corrected Scanning Transmission Electron Microscopy,” Micron, 43, pp. 1068–1072. [CrossRef]
Wan, C., Wang, Y., Norimatsu, W., Kusunoki, M., and Koumoto, K., 2012, “Nanoscale Stacking Faults Induced Low Thermal Conductivity in Thermoelectric Layered Metal Sulfides,” Appl. Phys. Lett., 100, p. 101913. [CrossRef]
Li, Z., Tan, S., Bozorg-Grayeli, E., Kodama, T., Asheghi, M., Delgado, G., Panzer, M., Pokrovsky, A., Wack, D., and Goodson, K. E., 2012, “Phonon Dominated Heat Conduction Normal to Mo/Si Multilayers With Period Below 10 nm,” Nano Lett., 12, pp. 3121–3126. [CrossRef] [PubMed]
Bozorg-Grayeli, E., Li, Z., Asheghi, M., Delgado, G., Pokrovsky, A., Panzer, M., Wack, D., and Goodson, K. E., 2012, “Thermal Conduction Properties of Mo/Si Multilayers for Extreme Ultraviolet Optics,” J. Appl. Phys., 112, p. 083504. [CrossRef]
Mahan, G. D., 2011, “Thermal Transport in AB Superlattices,” Phys. Rev. B, 83, p. 125313. [CrossRef]
Li, D., Wu, Y., Fan, R., Yang, P., and Majumdar, A., 2003, “Thermal Conductivity of Si/SiGe Superlattice Nanowires,” Appl. Phys. Lett., 83, pp. 3186–3188. [CrossRef]
Shiomi, J., and Maruyama, S., 2006, “Heat Conduction of Single-Walled Carbon Nanotube Isotope Superlattice Structures: A Molecular Dynamics Study,” Phys. Rev. B, 74, p. 155401. [CrossRef]
Jiang, J.-W., Wang, J.-S., and Wang, B.-S., 2011, “Minimum Thermal Conductance in Graphene and Boron Nitride Superlattice,” Appl. Phys. Lett., 99, p. 043109. [CrossRef]
Liang, Z., and Tsai, H.-L., 2011, “Effect of Thin Film Confined Between Two Dissimilar Solids on Interfacial Thermal Resistance,” J. Phys.: Condens. Matter, 23, p. 495303. [CrossRef] [PubMed]
Liang, Z., and Tsai, H.-L., 2012, “Reduction of Solid-Solid Thermal Boundary Resistance by Inserting an Interlayer,” Int. J. Heat Mass Transfer, 55, pp. 2999–3007. [CrossRef]
Le, N. Q., Duda, J. C., English, T. S., Hopkins, P. E., Beechem, T. E., and Norris, P. M., 2012, “Strategies for Tuning Phonon Transport in Multilayered Structures Using a Mismatch-Based Particle Model,” J. Appl. Phys., 111, p. 084310. [CrossRef]
Schelling, P. K., and Phillpot, S. R., 2003, “Multiscale Simulation of Phonon Transport in Superlattices,” J. Appl. Phys., 93, pp. 5377–5387. [CrossRef]
Li, X., and Yang, R., 2012, “Size-Dependent Phonon Transmission Across Dissimilar Material Interfaces,” J. Phys.: Condens. Matter, 24, p. 155302. [CrossRef] [PubMed]
Landry, E. S., and McGaughey, A. J. H., 2010, “Effect of Film Thickness on the Thermal Resistance of Confined Semiconductor Thin Films,” J. Appl. Phys., 107, p. 013521. [CrossRef]
Tian, Z. T., White, B. E., Jr., and Sun, Y., 2010, “Phonon Wave-Packet Interference and Phonon Tunneling Based Energy Transport Across Nanostructured Thin Films,” Appl. Phys. Lett., 96, p. 263113. [CrossRef]
Huang, M.-J., and Chang, T.-M., 2012, “Thermal Transport Within Quantum-Dot Nanostructured Semiconductors,” Int. J. Heat Mass Transfer, 55, pp. 2800–2806. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Tuning of hBD achieved in experiments by roughness (Sec. 2.5), interdiffusion (Sec. 2.6), and defects (Sec. 2.7) at room temperature. In actual systems, each interface condition will be accompanied, to some extent, by the others. Thorough characterization of the interface is essential in experiments seeking to understand the effects of interface conditions on hBD.

Grahic Jump Location
Fig. 2

Selected experimental reports of thermal conductivity in multilayers and superlattices as a function of temperature T. We list the period length of each system in nanometers. Theory predicts that incoherent transport should exhibit a plateau with rising T, while coherent transport should exhibit some inverse tendency due to mini-umklapp scattering at high T.

Grahic Jump Location
Fig. 3

Experimental measurements of thermal conductivity in multilayers and superlattices as a function of period length L. All data are selected around 300 K. As a tuning parameter, L seems to allow control of k over a factor of up to 3 or 4. Data for cross comparison with Fig. 2 are available for Lee et al. [109], Capinski et al. [120], and Costescu et al. [122]. Theory predicts that a monotonic increase with L indicates incoherent transport, but a “minimum conductivity” at short periods indicates a transition to coherent transport.

Grahic Jump Location
Fig. 4

Schematic diagram of a polyjunction. The material and thicknesses of the N layers are selected to tune the transport. For N=0, the original interface is recovered.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In