0
Research Papers: Experimental Techniques

Heat Transfer in Thermoelectric Materials and Devices

[+] Author and Article Information
Gang Chen

e-mail: gchen2@mit.edu
Department of Mechanical Engineering,
Massachusetts Institute of Technology,
Cambridge, MA 02139

References cited in Figure 1 are [30,32,33,39,49,50,59,60,88,90,96].

References cited in Figure 2 are [122,125,128,129,131,133].

Manuscript received October 17, 2012; final manuscript received January 15, 2013; published online May 16, 2013. Assoc. Editor: Leslie Phinney.

J. Heat Transfer 135(6), 061605 (May 16, 2013) (15 pages) Paper No: HT-12-1576; doi: 10.1115/1.4023585 History: Received October 17, 2012; Revised January 15, 2013

Solid-state thermoelectric devices are currently used in applications ranging from thermocouple sensors to power generators in space missions, to portable air-conditioners and refrigerators. With the ever-rising demand throughout the world for energy consumption and CO2 reduction, thermoelectric energy conversion has been receiving intensified attention as a potential candidate for waste-heat harvesting as well as for power generation from renewable sources. Efficient thermoelectric energy conversion critically depends on the performance of thermoelectric materials and devices. In this review, we discuss heat transfer in thermoelectric materials and devices, especially phonon engineering to reduce the lattice thermal conductivity of thermoelectric materials, which requires a fundamental understanding of nanoscale heat conduction physics.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Goldsmid, H. J., 2010, Introduction to Thermoelectricity, Springer, New York.
Sootsman, J. R., Chung, D. Y., and Kanatzidis, M. G., 2009, “New and Old Concepts in Thermoelectric Materials,” Angew. Chem., Int. Ed., 48(46), pp. 8616–8639. [CrossRef]
Slack, G. A., 1995, “New Materials and Performance Limits for Thermoelectric Cooling,” CRC Handbook of Thermoelectrics, D. M.Rowe, ed., CRC Press, Boca Raton, FL, pp. 407–440.
Mahan, G. D., and Sofo, J. O., 1996, “The Best Thermoelectric,” Proc. Natl. Acad. Sci. USA, 93(15), pp. 7436–7439. [CrossRef]
Hicks, L. D., and Dresselhaus, M. S., 1993, “Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 47(19), pp. 12727–12731. [CrossRef]
Hicks, L. D., and Dresselhaus, M. S., 1993, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Phys. Rev. B, 47(24), pp. 16631–16634. [CrossRef]
Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J. P., and Caillat, T., 2003, “Recent Developments in Thermoelectric Materials,” Int. Mater. Rev., 48(1), pp. 45–66. [CrossRef]
Minnich, A. J., Dresselhaus, M. S., Ren, Z. F., and Chen, G., 2009, “Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects,” Energy Environ. Sci., 2(5), pp. 466–479. [CrossRef]
Lan, Y. C., Minnich, A. J., Chen, G., and Ren, Z. F., 2010, “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach,” Adv. Funct. Mater., 20(3), pp. 357–376. [CrossRef]
Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F., and Chen, G., 2012, “Perspectives on Thermoelectrics: From Fundamentals to Device Applications,” Energy Environ. Sci., 5(1), pp. 5147–5162. [CrossRef]
Wood, C., 1988, “Materials for Thermoelectric Energy Conversion,” Rep. Prog. Phys., 51(4), pp. 459–539. [CrossRef]
Snyder, G. J., and Toberer, E. S., 2008, “Complex Thermoelectric Materials,” Nature Mater., 7(2), pp. 105–114. [CrossRef]
Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P., and Gogna, P., 2007, “New Directions for Low-Dimensional Thermoelectric Materials,” Adv. Mater., 19(8), pp. 1043–1053. [CrossRef]
Vineis, C. J., Shakouri, A., Majumdar, A., and Kanatzidis, M. G., 2010, “Nanostructured Thermoelectrics: Big Efficiency Gains From Small Features,” Adv. Mater., 22(36), pp. 3970–3980. [CrossRef] [PubMed]
Disalvo, F. J., 1999, “Thermoelectric Cooling and Power Generation,” Science, 285(5428), pp. 703–706. [CrossRef] [PubMed]
Bell, L. E., 2008, “Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems,” Science, 321(5895), pp. 1457–1461. [CrossRef] [PubMed]
Chen, G., and Shakouri, A., 2002, “Heat Transfer in Nanostructures for Solid-State Energy Conversion,” ASME J. Heat Transfer, 124(2), pp. 242–252. [CrossRef]
Rowe, D. M., 1995, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL.
Rowe, D. M., 2006, Thermoelectrics Handbook: Macro to Nano, CRC Press, Boca Raton, FL.
Tritt, T. M., 2001, Recent Trends in Thermoelectric Materials Research, Semiconductors and Semimetals, Academic Press, San Diego, CA.
Chen, G., 2006, “Nanoscale Heat Transfer and Nanostructured Thermoelectrics,” IEEE Trans. Compon. Packag. Technol., 29(2), pp. 238–246. [CrossRef]
Tritt, T. M., and Subramanian, M. A., 2006, “Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View,” MRS Bull., 31(3), pp. 188–194. [CrossRef]
Goldsmid, H. J., and Douglas, R. W., 1954, “The Use of Semiconductors in Thermoelectric Refrigeration,” Br. J. Appl. Phys., 5, pp. 386–390. [CrossRef]
Ioffe, A. F., 1957, Semiconductor Thermoelements and Thermo-Electric Cooling, Infosearch Ltd., London.
Steele, M. C., and Rosi, F. D., 1958, “Thermal Conductivity and Thermoelectric Power of Germanium-Silicon Alloys,” J. Appl. Phys., 29(11), pp. 1517–1520. [CrossRef]
Ioffe, A. F., Airapetiants, S. V., Ioffe, A. V., Kolomoetz, N. V., and Stilbans, L. S., 1956, “Increasing the Efficiency of Semiconductor Thermocouples,” Dokl. Akad. Nauk SSSR, 106(6), p. 981.
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., 2001, “Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit,” Nature, 413(6856), pp. 597–602. [CrossRef] [PubMed]
Shakouri, A., and Bowers, J. E., 1997, “Heterostructure Integrated Thermionic Coolers,” Appl. Phys. Lett., 71(9), pp. 1234–1236. [CrossRef]
Zhang, Q., Cao, F., Liu, W. S., Lukas, K., Yu, B., Chen, S., Opeil, C., Broido, D., Chen, G., and Ren, Z. F., 2012, “Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe1−ySey,” J. Am. Chem. Soc., 134(24), pp. 10031–10038. [CrossRef] [PubMed]
Pei, Y. Z., Shi, X. Y., Lalonde, A., Wang, H., Chen, L. D., and Snyder, G. J., 2011, “Convergence of Electronic Bands for High Performance Bulk Thermoelectrics,” Nature, 473(7345), pp. 66–69. [CrossRef] [PubMed]
Biswas, K., He, J., Blum, I. D., Wu, C.-I., Hogan, T. P., Seidman, D. N., Dravid, V. P., and Kanatzidis, M. G., 2012, “High-Performance Bulk Thermoelectrics With All-Scale Hierarchical Architectures,” Nature, 489, pp. 414–418. [CrossRef] [PubMed]
Wang, X. W., Lee, H., Lan, Y. C., Zhu, G. H., Joshi, G., Wang, D. Z., Yang, J., Muto, A. J., Tang, M. Y., Klatsky, J., Song, S., Dresselhaus, M. S., Chen, G., and Ren, Z. F., 2008, “Enhanced Thermoelectric Figure of Merit in Nanostructured n-Type Silicon Germanium Bulk Alloy,” Appl. Phys. Lett., 93(19), p. 193121. [CrossRef]
Joshi, G., Lee, H., Lan, Y. C., Wang, X. W., Zhu, G. H., Wang, D. Z., Gould, R. W., Cuff, D. C., Tang, M. Y., Dresselhaus, M. S., Chen, G., and Ren, Z. F., 2008, “Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-Type Silicon Germanium Bulk Alloys,” Nano Lett., 8(12), pp. 4670–4674. [CrossRef] [PubMed]
Uher, C., 2001, “Skutterudites: Prospective Novel Thermoelectrics,” Semicond. Semimetals, 69, pp. 139–253. [CrossRef]
Nolas, G. S., Slack, G. A., Morelli, D. T., Tritt, T. M., and Ehrlich, A. C., 1996, “The Effect of Rare-Earth Filling on the Lattice Thermal Conductivity of Skutterudites,” J. Appl. Phys., 79(8), pp. 4002–4008. [CrossRef]
Sales, B. C., Mandrus, D., and Williams, R. K., 1996, “Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials,” Science, 272(5266), pp. 1325–1328. [CrossRef] [PubMed]
Morelli, D. T., Meisner, G. P., Chen, B. X., Hu, S. Q., and Uher, C., 1997, “Cerium Filling and Doping of Cobalt Triantimonide,” Phys. Rev. B, 56(12), pp. 7376–7383. [CrossRef]
Shi, X., Kong, H., Li, C. P., Uher, C., Yang, J., Salvador, J. R., Wang, H., Chen, L., and Zhang, W., 2008, “Low Thermal Conductivity and High Thermoelectric Figure of Merit in n-Type BaxYbyCo4Sb12 Double-Filled Skutterudites,” Appl. Phys. Lett., 92(18), p. 182101. [CrossRef]
Shi, X., Yang, J., Salvador, J. R., Chi, M. F., Cho, J. Y., Wang, H., Bai, S. Q., Yang, J. H., Zhang, W. Q., and Chen, L. D., 2011, “Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit Through Separately Optimizing Electrical and Thermal Transports,” J. Am. Chem. Soc., 133(20), pp. 7837–7846. [CrossRef] [PubMed]
Jie, Q., Wang, H., Liu, W., Wang, H., Chen, G., and Ren, Z., “Fast Phase Formation of Double-Filled p-Type Skutterudites by Ball-Milling and Hot-Pressing,” Phys. Chem. Chem. Phys. (accepted). [CrossRef]
Saramat, A., Svensson, G., Palmqvist, A. E. C., Stiewe, C., Mueller, E., Platzek, D., Williams, S. G. K., Rowe, D. M., Bryan, J. D., and Stucky, G. D., 2006, “Large Thermoelectric Figure of Merit at High Temperature in Czochralski-Grown Clathrate Ba8Ga16Ge30,” J. Appl. Phys., 99(2), p. 023708. [CrossRef]
Deng, S. K., Tang, X. F., Li, P., and Zhang, Q. J., 2008, “High Temperature Thermoelectric Transport Properties of p-Type Ba8Ga16AlxGe30−x Type-I Clathrates With High Performance,” J. Appl. Phys., 103(7), p. 073503. [CrossRef]
Caillat, T., Fleurial, J. P., and Borshchevsky, A., 1997, “Preparation and Thermoelectric Properties of Semiconducting Zn4Sb3,” J. Phys. Chem. Solids, 58(7), pp. 1119–1125. [CrossRef]
Brown, S. R., Kauzlarich, S. M., Gascoin, F., and Snyder, G. J., 2006, “Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation,” Chem. Mater., 18(7), pp. 1873–1877. [CrossRef]
Wolfing, B., Kloc, C., Teubner, J., and Bucher, E., 2001, “High Performance Thermoelectric Tl9BiTe6 With an Extremely Low Thermal Conductivity,” Phys. Rev. Lett., 86(19), pp. 4350–4353. [CrossRef] [PubMed]
Kurosaki, K., Kosuga, A., Muta, H., and Yamanaka, S., 2005, “Thermoelectric Properties of Thallium Compounds With Extremely Low Thermal Conductivity,” Mater. Trans., 46(7), pp. 1502–1505. [CrossRef]
Uher, C., Yang, J., Hu, S., Morelli, D. T., and Meisner, G. P., 1999, “Transport Properties of Pure and Doped MNiSn (M = Zr, Hf),” Phys. Rev. B, 59(13), pp. 8615–8621. [CrossRef]
Yan, X. A., Joshi, G., Liu, W. S., Lan, Y. C., Wang, H., Lee, S., Simonson, J. W., Poon, S. J., Tritt, T. M., Chen, G., and Ren, Z. F., 2011, “Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers,” Nano Lett., 11(2), pp. 556–560. [CrossRef] [PubMed]
Joshi, G., Yan, X., Wang, H. Z., Liu, W. S., Chen, G., and Ren, Z. F., 2011, “Enhancement in Thermoelectric Figure-of-Merit of an N-Type Half-Heusler Compound by the Nanocomposite Approach,” Adv. Energy Mater., 1(4), pp. 643–647. [CrossRef]
Yan, X., Liu, W. S., Wang, H., Chen, S., Shiomi, J., Esfarjani, K., Wang, H. Z., Wang, D. Z., Chen, G., and Ren, Z. F., 2012, “Stronger Phonon Scattering by Larger Differences in Atomic Mass and Size in p-Type Half-Heuslers Hf1−xTixCoSb0.8Sn0.2,” Energy Environ. Sci., 5(6), pp. 7543–7548. [CrossRef]
Terasaki, I., Sasago, Y., and Uchinokura, K., 1997, “Large Thermoelectric Power in NaCo2O4 Single Crystals,” Phys. Rev. B, 56(20), pp. 12685–12687. [CrossRef]
Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U., and Sodeoka, S., 2000, “An Oxide Single Crystal With High Thermoelectric Performance in Air,” Jpn. J. Appl. Phys., Part 2, 39(11B), pp. L1127–L1129. [CrossRef]
Funahashi, R., Matsubara, I., and Sodeoka, S., 2000, “Thermoelectric Properties of Bi2Sr2Co2Ox Polycrystalline Materials,” Appl. Phys. Lett., 76(17), pp. 2385–2387. [CrossRef]
Ohta, S., Nomura, T., Ohta, H., and Koumoto, K., 2005, “High-Temperature Carrier Transport and Thermoelectric Properties of Heavily La- or Nb-Doped SrTiO3 Single Crystals,” J. Appl. Phys., 97(3), p. 034106. [CrossRef]
Flahaut, D., Mihara, T., Funahashi, R., Nabeshima, N., Lee, K., Ohta, H., and Koumoto, K., 2006, “Thermoelectrical Properties of A-Site Substituted Ca1−xRexMnO3 System,” J. Appl. Phys., 100(8), p. 084911. [CrossRef]
Muta, H., Kurosaki, K., and Yamanaka, S., 2003, “Thermoelectric Properties of Rare Earth Doped SrTiO3,” J. Alloys Compd., 350(1–2), pp. 292–295. [CrossRef]
Zhou, J., Yang, R. G., Chen, G., and Dresselhaus, M. S., 2011, “Optimal Bandwidth for High Efficiency Thermoelectrics,” Phys. Rev. Lett., 107(22), p. 226601. [CrossRef] [PubMed]
Jeong, C., Kim, R., and Lundstrom, M. S., 2012, “On the Best Bandstructure for Thermoelectric Performance: A Landauer Perspective,” J. Appl. Phys., 111(11), p. 113707. [CrossRef]
Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Snyder, G. J., 2008, “Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States,” Science, 321(5888), pp. 554–557. [CrossRef] [PubMed]
Zhang, Q. Y., Wang, H., Liu, W. S., Wang, H. Z., Yu, B., Zhang, Q., Tian, Z. T., Ni, G., Lee, S., Esfarjani, K., Chen, G., and Ren, Z. F., 2012, “Enhancement of Thermoelectric Figure-of-Merit by Resonant States of Aluminium Doping in Lead Selenide,” Energy Environ. Sci., 5(1), pp. 5246–5251. [CrossRef]
Heremans, J. P., Thrush, C. M., and Morelli, D. T., 2004, “Thermopower Enhancement in Lead Telluride Nanostructures,” Phys. Rev. B, 70(11), p. 115334. [CrossRef]
Zide, J. M. O., Vashaee, D., Bian, Z. X., Zeng, G., Bowers, J. E., Shakouri, A., and Gossard, A. C., 2006, “Demonstration of Electron Filtering to Increase the Seebeck Coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As Superlattices,” Phys. Rev. B, 74(20), p. 205335. [CrossRef]
Zebarjadi, M., Joshi, G., Zhu, G. H., Yu, B., Minnich, A., Lan, Y. C., Wang, X. W., Dresselhaus, M., Ren, Z. F., and Chen, G., 2011, “Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites,” Nano Lett., 11(6), pp. 2225–2230. [CrossRef] [PubMed]
Koga, T., Sun, X., Cronin, S. B., and Dresselhaus, M. S., 1998, “Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Superlattices,” Appl. Phys. Lett., 73(20), pp. 2950–2952. [CrossRef]
Zebarjadi, M., Liao, B., Esfarjani, K., Dresselhaus, M., and Chen, G., 2013, “Enhancing the Thermoelectric Power Factor by Using Invisible Dopants,” Adv. Mater., 25(11), pp. 1577–1582. [CrossRef]
Chen, G., Tien, C. L., Wu, X., and Smith, J. S., 1994, “Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures,” ASME J. Heat Transfer, 116(2), pp. 325–331. [CrossRef]
Chen, G., 2001, “Phonon Transport in Low-Dimensional Structures,” Semicond. Semimetals, 71, pp. 203–259. [CrossRef]
Harman, T. C., Taylor, P. J., Walsh, M. P., and Laforge, B. E., 2002, “Quantum Dot Superlattice Thermoelectric Materials and Devices,” Science, 297(5590), pp. 2229–2232. [CrossRef] [PubMed]
Lee, S. M., Cahill, D. G., and Venkatasubramanian, R., 1997, “Thermal Conductivity of Si-Ge Superlattices,” Appl. Phys. Lett., 70(22), pp. 2957–2959. [CrossRef]
Liu, W. L., Borca-Tasciuc, T., Chen, G., Liu, J. L., and Wang, K. L., 2001, “Anisotropic Thermal Conductivity of Ge Quantum-Dot and Symmetrically Strained Si/Ge Superlattices,” J. Nanosci. Nanotechnol., 1(1), pp. 39–42. [CrossRef] [PubMed]
Borca-Tasciuc, T., Liu, W. L., Liu, J. L., Zeng, T. F., Song, D. W., Moore, C. D., Chen, G., Wang, K. L., Goorsky, M. S., Radetic, T., Gronsky, R., Koga, T., and Dresselhaus, M. S., 2000, “Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices,” Superlattices Microstruct., 28(3), pp. 199–206. [CrossRef]
Capinski, W. S., Maris, H. J., Ruf, T., Cardona, M., Ploog, K., and Katzer, D. S., 1999, “Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-And-Probe Technique,” Phys. Rev. B, 59(12), pp. 8105–8113. [CrossRef]
Caylor, J. C., Coonley, K., Stuart, J., Colpitts, T., and Venkatasubramanian, R., 2005, “Enhanced Thermoelectric Performance in PbTe-Based Superlattice Structures From Reduction of Lattice Thermal Conductivity,” Appl. Phys. Lett., 87(2), p. 023105. [CrossRef]
Heremans, J., Thrush, C. M., Lin, Y. M., Cronin, S., Zhang, Z., Dresselhaus, M. S., and Mansfield, J. F., 2000, “Bismuth Nanowire Arrays: Synthesis and Galvanomagnetic Properties,” Phys. Rev. B, 61(4), pp. 2921–2930. [CrossRef]
Guthy, C., Nam, C. Y., and Fischer, J. E., 2008, “Unusually Low Thermal Conductivity of Gallium Nitride Nanowires,” J. Appl. Phys., 103(6), p. 064319. [CrossRef]
Harris, C. T., Martinez, J. A., Shaner, E. A., Huang, J. Y., Swartzentruber, B. S., Sullivan, J. P., and Chen, G., 2011, “Fabrication of a Nanostructure Thermal Property Measurement Platform,” Nanotechnology, 22(27), p. 275308. [CrossRef] [PubMed]
Zhou, J. H., Jin, C. G., Seol, J. H., Li, X. G., and Shi, L., 2005, “Thermoelectric Properties of Individual Electrodeposited Bismuth Telluride Nanowires,” Appl. Phys. Lett., 87(13), p. 133109. [CrossRef]
Zhou, F., Moore, A. L., Pettes, M. T., Lee, Y., Seol, J. H., Ye, Q. L., Rabenberg, L., and Shi, L., 2010, “Effect of Growth Base Pressure on the Thermoelectric Properties of Indium Antimonide Nanowires,” J. Phys. D: Appl. Phys., 43(2), p. 025406. [CrossRef]
Zhou, F., Moore, A. L., Bolinsson, J., Persson, A., Froberg, L., Pettes, M. T., Kong, H. J., Rabenberg, L., Caroff, P., Stewart, D. A., Mingo, N., Dick, K. A., Samuelson, L., Linke, H., and Shi, L., 2011, “Thermal Conductivity of Indium Arsenide Nanowires With Wurtzite and Zinc Blende Phases,” Phys. Rev. B, 83(20), p. 205416. [CrossRef]
Moore, A. L., Pettes, M. T., Zhou, F., and Shi, L., 2009, “Thermal Conductivity Suppression in Bismuth Nanowires,” J. Appl. Phys., 106(3), p. 034310. [CrossRef]
Hochbaum, A. I., Chen, R. K., Delgado, R. D., Liang, W. J., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P. D., 2008, “Enhanced Thermoelectric Performance of Rough Silicon Nanowires,” Nature, 451(7175), pp. 163–167. [CrossRef] [PubMed]
Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J. K., Goddard, W. A., and Heath, J. R., 2008, “Silicon Nanowires as Efficient Thermoelectric Materials,” Nature, 451(7175), pp. 168–171. [CrossRef] [PubMed]
Wingert, M. C., Chen, Z. C. Y., Dechaumphai, E., Moon, J., Kim, J. H., Xiang, J., and Chen, R. K., 2011, “Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime,” Nano Lett., 11(12), pp. 5507–5513. [CrossRef] [PubMed]
Lee, E. K., Yin, L., Lee, Y., Lee, J. W., Lee, S. J., Lee, J., Cha, S. N., Whang, D., Hwang, G. S., Hippalgaonkar, K., Majumdar, A., Yu, C., Choi, B. L., Kim, J. M., and Kim, K., 2012, “Large Thermoelectric Figure-of-Merits From SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties,” Nano Lett., 12(6), pp. 2918–2923. [CrossRef] [PubMed]
Zhao, X. B., Ji, X. H., Zhang, Y. H., Zhu, T. J., Tu, J. P., and Zhang, X. B., 2005, “Bismuth Telluride Nanotubes and the Effects on the Thermoelectric Properties of Nanotube-Containing Nanocomposites,” Appl. Phys. Lett., 86(6), p. 062111. [CrossRef]
Yang, R., and Chen, G., 2004, “Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites,” Phys. Rev. B, 69(19), p. 195316. [CrossRef]
Lan, Y. C., Poudel, B., Ma, Y., Wang, D. Z., Dresselhaus, M. S., Chen, G., and Ren, Z. F., 2009, “Structure Study of Bulk Nanograined Thermoelectric Bismuth Antimony Telluride,” Nano Lett., 9(4), pp. 1419–1422. [CrossRef] [PubMed]
Poudel, B., Hao, Q., Ma, Y., Lan, Y. C., Minnich, A., Yu, B., Yan, X. A., Wang, D. Z., Muto, A., Vashaee, D., Chen, X. Y., Liu, J. M., Dresselhaus, M. S., Chen, G., and Ren, Z. F., 2008, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, 320(5876), pp. 634–638. [CrossRef] [PubMed]
Ma, Y., Hao, Q., Poudel, B., Lan, Y. C., Yu, B., Wang, D. Z., Chen, G., and Ren, Z. F., 2008, “Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made From Elemental Chunks,” Nano Lett., 8(8), pp. 2580–2584. [CrossRef] [PubMed]
Girard, S. N., He, J. Q., Zhou, X. Y., Shoemaker, D., Jaworski, C. M., Uher, C., Dravid, V. P., Heremans, J. P., and Kanatzidis, M. G., 2011, “High Performance Na-Doped PbTe-PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures,” J. Am. Chem. Soc., 133(41), pp. 16588–16597. [CrossRef] [PubMed]
Poudeu, P. F. P., D'Angelo, J., Downey, A. D., Short, J. L., Hogan, T. P., and Kanatzidis, M. G., 2006, “High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-Type Na1−xPbmSbyTem+2,” Angew. Chem., Int. Ed., 45(23), pp. 3835–3839. [CrossRef]
Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., and Majumdar, A., 2006, “Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors,” Phys. Rev. Lett., 96(4), p. 045901. [CrossRef] [PubMed]
Ge, Z. H., Zhang, B. P., Liu, Y., and Li, J. F., 2012, “Nanostructured Bi2−xCuxS3 Bulk Materials With Enhanced Thermoelectric Performance,” Phys. Chem. Chem. Phys., 14(13), pp. 4475–4481. [CrossRef] [PubMed]
Li, H., Tang, X., Zhang, Q., and Uher, C., 2008, “Rapid Preparation Method of Bulk Nanostructured Yb0.3Co4Sb12+y Compounds and Their Improved Thermoelectric Performance,” Appl. Phys. Lett., 93(25), p. 252109. [CrossRef]
Li, H., Tang, X., Zhang, Q., and Uher, C., 2009, “High Performance InxCeyCo4Sb12 Thermoelectric Materials With in situ Forming Nanostructured InSb Phase,” Appl. Phys. Lett., 94(10), p. 102114. [CrossRef]
Yan, X., Poudel, B., Ma, Y., Liu, W. S., Joshi, G., Wang, H., Lan, Y. C., Wang, D. Z., Chen, G., and Ren, Z. F., 2010, “Experimental Studies on Anisotropic Thermoelectric Properties and Structures of n-Type Bi2Te2.7Se0.3,” Nano Lett., 10(9), pp. 3373–3378. [CrossRef] [PubMed]
Peierls, R., 1929, “The Kinetic Theory of Thermal Conduction in Crystals,” Ann. Phys., 3(8), pp. 1055–1101. [CrossRef]
Callaway, J., 1959, “Model for Lattice Thermal Conductivity at Low Temperatures,” Phys. Rev., 113(4), pp. 1046–1051. [CrossRef]
Klemens, P. G., 1958, “Thermal Conductivity and Lattice Vibrational Modes,” Solid State Phys., Adv. Res. Appl., 7, pp. 1–98.
Holland, M. G., 1963, “Analysis of Lattice Thermal Conductivity,” Phys. Rev., 132(6), pp. 2461–2471. [CrossRef]
de Haas, W. J., and Biermasz, T., 1938, “The Dependence of Thickness of the Thermal Resistance of Crystals at Low Temperatures,” Physica, 5, pp. 619–624. [CrossRef]
Casimir, H. B. G., 1938, “Note on the Conduction of Heat in Crystals,” Physica, 5, pp. 495–500. [CrossRef]
Ziman, J. M., 1960, Electrons and Phonons: The Theory of Transport Phenomena in Solids, International Series of Monographs on Physics, Clarendon Press, Oxford, UK.
Ladd, A. J. C., Moran, B., and Hoover, W. G., 1986, “Lattice Thermal Conductivity—A Comparison of Molecular Dynamics and Anharmonic Lattice Dynamics,” Phys. Rev. B, 34(8), pp. 5058–5064. [CrossRef]
Volz, S. G., and Chen, G., 2000, “Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals,” Phys. Rev. B, 61(4), pp. 2651–2656. [CrossRef]
Li, J., Porter, L., and Yip, S., 1998, “Atomistic Modeling of Finite-Temperature Properties of Crystalline Beta-SiC: II. Thermal Conductivity and Effects of Point Defects,” J. Nucl. Mater., 255(2–3), pp. 139–152. [CrossRef]
Che, J. W., Cagin, T., Deng, W. Q., and Goddard, W. A., 2000, “Thermal Conductivity of Diamond and Related Materials From Molecular Dynamics Simulations,” J. Chem. Phys., 113(16), pp. 6888–6900. [CrossRef]
Oligschleger, C., and Schon, J. C., 1999, “Simulation of Thermal Conductivity and Heat Transport in Solids,” Phys. Rev. B, 59(6), pp. 4125–4133. [CrossRef]
Green, M. S., 1954, “Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena 2. Irreversible Process in Fluids,” J. Chem. Phys., 22(3), pp. 398–413. [CrossRef]
Kubo, R., Yokota, M., and Nakajima, S., 1957, “Statistical Mechanical Theory of Irreversible Processes 2. Response to Thermal Disturbance,” J. Phys. Soc. Jpn., 12(11), pp. 1203–1211. [CrossRef]
Hoover, W. G., and Ashurst, W. T., 1975, “Nonequilibrium Molecular Dynamics,” Theor. Chem.: Adv. Perspect., 1, pp. 1–51. [CrossRef]
Kotake, S., and Wakuri, S., 1994, “Molecular Dynamics Study of Heat Conduction in Solid Materials,” JSME Int. J., Ser. B, 37(1), pp. 103–108. [CrossRef]
Ikeshoji, T., and Hafskjold, B., 1994, “Nonequilibrium Molecular Dynamics Calculations of Heat Conduction in Liquid and Through Liquid-Gas Interface,” Mol. Phys., 81(2), pp. 251–261. [CrossRef]
Chen, G., 2005, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (MIT-Pappalardo Series in Mechanical Engineering), Oxford University Press, New York.
Henry, A. S., and Chen, G., 2008, “Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics,” J. Comput. Theor. Nanosci., 5(2), pp. 141–152.
McGaughey, A. J. H., and Kaviany, M., 2004, “Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation,” Phys. Rev. B, 69(9), p. 094303. [CrossRef]
Turney, J. E., Landry, E. S., McGaughey, A. J. H., and Amon, C. H., 2009, “Predicting Phonon Properties and Thermal Conductivity From Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations,” Phys. Rev. B, 79(6), p. 064301. [CrossRef]
Qiu, B., Bao, H., Zhang, G. Q., Wu, Y., and Ruan, X. L., 2012, “Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures,” Comput. Mater. Sci., 53(1), pp. 278–285. [CrossRef]
Broido, D. A., Ward, A., and Mingo, N., 2005, “Lattice Thermal Conductivity of Silicon From Empirical Interatomic Potentials,” Phys. Rev. B, 72(1), p. 014308. [CrossRef]
Tuckerman, M. E., 2002, “Ab Initio Molecular Dynamics: Basic Concepts, Current Trends and Novel Applications,” J. Phys.: Condens. Matter, 14(50), pp. R1297–R1355. [CrossRef]
Kim, H., and Kaviany, M., 2012, “Effect of Thermal Disorder on High Figure of Merit in PbTe,” Phys. Rev. B, 86(4), p. 045213. [CrossRef]
Broido, D., Malorny, M., Birner, G., Mingo, N., and Stewart, D., 2007, “Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles,” Appl. Phys. Lett., 91(23), p. 231922. [CrossRef]
Deinzer, G., Birner, G., and Strauch, D., 2003, “Ab Initio Calculation of the Linewidth of Various Phonon Modes in Germanium and Silicon,” Phys. Rev. B, 67(14), p. 144304. [CrossRef]
Esfarjani, K., and Stokes, H., 2008, “Method to Extract Anharmonic Force Constants From First Principles Calculations,” Phys. Rev. B, 77(14), p. 144112. [CrossRef]
Esfarjani, K., Chen, G., and Stokes, H., 2011, “Heat Transport in Silicon From First-Principles Calculations,” Phys. Rev. B, 84(8), p. 085204. [CrossRef]
Garg, J., Bonini, N., Kozinsky, B., and Marzari, N., 2011, “Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study,” Phys. Rev. Lett., 106(4), p. 045901. [CrossRef] [PubMed]
Garg, J., Bonini, N., and Marzari, N., 2011, “High Thermal Conductivity in Short-Period Superlattices,” Nano Lett., 11(12), pp. 5135–5141. [CrossRef] [PubMed]
Tian, Z., Garg, J., Esfarjani, K., Shiga, T., Shiomi, J., and Chen, G., 2012, “Phonon Conduction in PbSe, PbTe, and PbTe1−xSex From First-Principles Calculations,” Phys. Rev. B, 85(18), p. 184303. [CrossRef]
Shiomi, J., Esfarjani, K., and Chen, G., 2011, “Thermal Conductivity of Half-Heusler Compounds From First-Principles Calculations,” Phys. Rev. B, 84(10), p. 104302. [CrossRef]
Shiga, T., Shiomi, J., Ma, J., Delaire, O., Radzynski, T., Lusakowski, A., Esfarjani, K., and Chen, G., 2012, “Microscopic Mechanism of Low Thermal Conductivity in Lead Telluride,” Phys. Rev. B, 85(15), p. 155203. [CrossRef]
Luo, T., Garg, J., Shiomi, J., Esfarjani, K., and Chen, G., 2013, “Gallium Arsenide Thermal Conductivity and Optical Phonon Relaxation Times From First-Principles Calculations,” Europhys. Lett., 101, p. 16001. [CrossRef]
Minnich, A. J., Johnson, J. A., Schmidt, A. J., Esfarjani, K., Dresselhaus, M. S., Nelson, K. A., and Chen, G., 2011, “Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths,” Phys. Rev. Lett., 107(9), p. 095901. [CrossRef] [PubMed]
Lee, S., Esfarjani, K., Garg, J., and Chen, G., “Lattice Thermal Transport in Bi, Sb, and Bi-Sb Alloy From First Principles,” (unsubmitted manuscript).
Bergman, L., Alexson, D., Murphy, P. L., Nemanich, R. J., Dutta, M., Stroscio, M. A., Balkas, C., Shin, H., and Davis, R. F., 1999, “Raman Analysis of Phonon Lifetimes in AlN and GaN of Wurtzite Structure,” Phys. Rev. B, 59(20), pp. 12977–12982. [CrossRef]
Letcher, J. J., Kang, K., Cahill, D. G., and Dlott, D. D., 2007, “Effects of High Carrier Densities on Phonon and Carrier Lifetimes in Si by Time-Resolved Anti-Stokes Raman Scattering,” Appl. Phys. Lett., 90(25), p. 252104. [CrossRef]
Delaire, O., Ma, J., Marty, K., May, A. F., McGuire, M. A., Du, M. H., Singh, D. J., Podlesnyak, A., Ehlers, G., Lumsden, M. D., and Sales, B. C., 2011, “Giant Anharmonic Phonon Scattering in PbTe,” Nature Mater., 10(8), pp. 614–619. [CrossRef]
Hoesch, M., Fukuda, T., Mizuki, J., Takenouchi, T., Kawarada, H., Sutter, J. P., Tsutsui, S., Baron, A. Q. R., Nagao, M., and Takano, Y., 2007, “Phonon Softening in Superconducting Diamond,” Phys. Rev. B, 75(14), p. 140508. [CrossRef]
Dames, C., and Chen, G., 2006, “Thermal Conductivity of Nanostructured Thermoelectric Materials,” Thermoelectrics Handbook: Macro to Nano, D. M.Rowe, ed., CRC Press, Boca Raton, FL, Chap. 42.
Koh, Y. K., and Cahill, D. G., 2007, “Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys,” Phys. Rev. B, 76(7), p. 075207. [CrossRef]
Minnich, A. J., Chen, G., Mansoor, S., and Yilbas, B. S., 2011, “Quasiballistic Heat Transfer Studied Using the Frequency-Dependent Boltzmann Transport Equation,” Phys. Rev. B, 84(23), p. 235207. [CrossRef]
Chen, G., 1996, “Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles,” ASME J. Heat Transfer, 118(3), pp. 539–545. [CrossRef]
Siemens, M. E., Li, Q., Yang, R. G., Nelson, K. A., Anderson, E. H., Murnane, M. M., and Kapteyn, H. C., 2010, “Quasi-Ballistic Thermal Transport From Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-Ray Beams,” Nature Mater., 9(1), pp. 26–30. [CrossRef]
Johnson, J. A., Maznev, A. A., Eliason, J. K., Minnich, A., Collins, K., Chen, G., Cuffe, J., Kehoe, T., Sotomayor Torres, C. M., and Nelson, K. A., 2011, “Experimental Evidence of Non-Diffusive Thermal Transport in Si and GaAs,” MRS Proc., 1347, Paper No. mrss11-1347-bb08-03. [CrossRef]
Minnich, A. J., 2012, “Determining Phonon Mean Free Paths From Observations of Quasiballistic Thermal Transport,” Phys. Rev. Lett., 109(20), p. 205901. [CrossRef] [PubMed]
Humphrey, T. E., and Linke, H., 2005, “Reversible Thermoelectric Nanomaterials,” Phys. Rev. Lett., 94(9), p. 096601. [CrossRef] [PubMed]
Flage-Larsen, E., and Prytz, O., 2011, “The Lorenz Function: Its Properties at Optimum Thermoelectric Figure-of-Merit,” Appl. Phys. Lett., 99(20), p. 202108. [CrossRef]
Kaibe, H., Tanaka, Y., Sakata, M., and Nishida, I., 1989, “Anisotropic Galvanomagnetic and Thermoelectric Properties of n-Type Bi2Te3 Single-Crystal With the Composition of a Useful Thermoelectric Cooling Material,” J. Phys. Chem. Solids, 50(9), pp. 945–950. [CrossRef]
Gallo, C. F., Chandrasekhar, B. S., and Sutter, P. H., 1963, “Transport Properties of Bismuth Single Crystals,” J. Appl. Phys., 34(1), pp. 144–152. [CrossRef]
White, G. K., and Woods, S. B., 1958, “The Thermal and Electrical Resistivity of Bismuth and Antimony at Low Temperatures,” Philos. Mag., 3(28), pp. 342–359. [CrossRef]
Uher, C., and Goldsmid, H. J., 1974, “Separation of the Electronic and Lattice Thermal Conductivities in Bismuth Crystals,” Phys. Status Solidi, 65(2), pp. 765–772. [CrossRef]
Abeles, B., 1963, “Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures,” Phys. Rev., 131(5), pp. 1906–1911. [CrossRef]
Klemens, P. G., 1955, “The Scattering of Low-Frequency Lattice Waves by Static Imperfections,” Proc. Phys. Soc. London, Sect. A, 68(12), pp. 1113–1128. [CrossRef]
Tamura, S., 1983, “Isotope Scattering of Dispersive Phonons in Ge,” Phys. Rev. B, 27(2), pp. 858–866. [CrossRef]
Klemens, P. G., 1960, “Thermal Resistance Due to Point Defects at High Temperatures,” Phys. Rev., 119(2), pp. 507–509. [CrossRef]
Anderson, P. W., 1958, “Absence of Diffusion in Certain Random Lattices,” Phys. Rev., 109(5), pp. 1492–1505. [CrossRef]
Mott, N. F., 1968, “Metal-Insulator Transition,” Rev. Mod. Phys., 40(4), pp. 677–683. [CrossRef]
Sales, B. C., Mandrus, D., Chakoumakos, B. C., Keppens, V., and Thompson, J. R., 1997, “Filled Skutterudite Antimonides: Electron Crystals and Phonon Glasses,” Phys. Rev. B, 56(23), pp. 15081–15089. [CrossRef]
Keppens, V., Mandrus, D., Sales, B. C., Chakoumakos, B. C., Dai, P., Coldea, R., Maple, M. B., Gajewski, D. A., Freeman, E. J., and Bennington, S., 1998, “Localized Vibrational Modes in Metallic Solids,” Nature, 395(6705), pp. 876–878. [CrossRef]
Long, G. J., Hermann, R. P., Grandjean, F., Alp, E. E., Sturhahn, W., Johnson, C. E., Brown, D. E., Leupold, O., and Ruffer, R., 2005, “Strongly Decoupled Europium and Iron Vibrational Modes in Filled Skutterudites,” Phys. Rev. B, 71(14), p. 140302. [CrossRef]
Grannan, E. R., Randeria, M., and Sethna, J. P., 1990, “Low Temperature Properties of A Model Glass 2. Specific Heat and Thermal Transport,” Phys. Rev. B, 41(11), pp. 7799–7821. [CrossRef]
Yang, J., Zhang, W., Bai, S. Q., Mei, Z., and Chen, L. D., 2007, “Dual-Frequency Resonant Phonon Scattering in BaxRyCo4Sb12 (R = La, Ce, and Sr),” Appl. Phys. Lett., 90(19), p. 192111. [CrossRef]
Wang, Y. G., Xu, X. F., and Yang, J. H., 2009, “Resonant Oscillation of Misch-Metal Atoms in Filled Skutterudites,” Phys. Rev. Lett., 102(17), p. 175508. [CrossRef] [PubMed]
Meisner, G. P., Morelli, D. T., Hu, S., Yang, J., and Uher, C., 1998, “Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members,” Phys. Rev. Lett., 80(16), pp. 3551–3554. [CrossRef]
Bai, S. Q., Shi, X., and Chen, L. D., 2010, “Lattice Thermal Transport in BaxREyCo4Sb12 (RE = Ce, Yb, and Eu) Double-Filled Skutterudites,” Appl. Phys. Lett., 96(20), p. 202102. [CrossRef]
Koza, M. M., Johnson, M. R., Viennois, R., Mutka, H., Girard, L., and Ravot, D., 2008, “Breakdown of Phonon Glass Paradigm in La- and Ce-Filled Fe4Sb12 Skutterudites,” Nature Mater., 7(10), pp. 805–810. [CrossRef]
Zebarjadi, M., Esfarjani, K., Yang, J. A., Ren, Z. F., and Chen, G., 2010, “Effect of Filler Mass and Binding on Thermal Conductivity of Fully Filled Skutterudites,” Phys. Rev. B, 82(19), p. 195207. [CrossRef]
Li, D. Y., Wu, Y. Y., Kim, P., Shi, L., Yang, P. D., and Majumdar, A., 2003, “Thermal Conductivity of Individual Silicon Nanowires,” Appl. Phys. Lett., 83(14), pp. 2934–2936. [CrossRef]
Ponomareva, I., Srivastava, D., and Menon, M., 2007, “Thermal Conductivity in Thin Silicon Nanowires: Phonon Confinement Effect,” Nano Lett., 7(5), pp. 1155–1159. [CrossRef] [PubMed]
Volz, S. G., and Chen, G., 1999, “Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires,” Appl. Phys. Lett., 75(14), pp. 2056–2058. [CrossRef]
He, Y. P., and Galli, G., 2012, “Microscopic Origin of the Reduced Thermal Conductivity of Silicon Nanowires,” Phys. Rev. Lett., 108(21), p. 215901. [CrossRef] [PubMed]
Donadio, D., and Galli, G., 2009, “Atomistic Simulations of Heat Transport in Silicon Nanowires,” Phys. Rev. Lett., 102(19), p. 195901. [CrossRef] [PubMed]
Chen, Y. F., Li, D. Y., Lukes, J. R., and Majumdar, A., 2005, “Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity,” ASME J. Heat Transfer, 127(10), pp. 1129–1137. [CrossRef]
Tian, Z. T., Esfarjani, K., Shiomi, J., Henry, A. S., and Chen, G., 2011, “On the Importance of Optical Phonons to Thermal Conductivity in Nanostructures,” Appl. Phys. Lett., 99(5), p. 053122. [CrossRef]
Kazan, M., Guisbiers, G., Pereira, S., Correia, M. R., Masri, P., Bruyant, A., Volz, S., and Royer, P., 2010, “Thermal Conductivity of Silicon Bulk and Nanowires: Effects of Isotopic Composition, Phonon Confinement, and Surface Roughness,” J. Appl. Phys., 107(8), p. 083503. [CrossRef]
Mingo, N., 2003, “Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations,” Phys. Rev. B, 68(11), p. 113308. [CrossRef]
Mingo, N., Yang, L., Li, D., and Majumdar, A., 2003, “Predicting the Thermal Conductivity of Si and Ge Nanowires,” Nano Lett., 3(12), pp. 1713–1716. [CrossRef]
Fuchs, K., 1938, “The Conductivity of Thin Metallic Films According to the Electron Theory of Metals,” Proc. Cambridge Philos. Soc., 34, pp. 100–108. [CrossRef]
Sondheimer, E. H., 1952, “The Mean Free Path of Electrons in Metals,” Adv. Phys., 1(1), pp. 1–42. [CrossRef]
Chen, R., Hochbaum, A. I., Murphy, P., Moore, J., Yang, P. D., and Majumdar, A., 2008, “Thermal Conductance of Thin Silicon Nanowires,” Phys. Rev. Lett., 101(10), p. 105501. [CrossRef] [PubMed]
Murphy, P. G., and Moore, J. E., 2007, “Coherent Phonon Scattering Effects on Thermal Transport in Thin Semiconductor Nanowires,” Phys. Rev. B, 76(15), p. 155313. [CrossRef]
Lim, J. W., Hippalgaonkar, K., Andrews, S. C., Majumdar, A., and Yang, P. D., 2012, “Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires,” Nano Lett., 12(5), pp. 2475–2482. [CrossRef] [PubMed]
Slack, G. A., 1979, “The Thermal Conductivity of Nonmetallc Crystals,” Solid State Physics, H.Ehrenreich, F.Seitz, and D.Turnbull, eds., Academic Press, New York, pp. 1–73.
Cahill, D. G., Watson, S. K., and Pohl, R. O., 1992, “Lower Limit to the Thermal Conductivity of Disordered Crystals,” Phys. Rev. B, 46(10), pp. 6131–6140. [CrossRef]
Chiritescu, C., Cahill, D. G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., and Zschack, P., 2007, “Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals,” Science, 315(5810), pp. 351–353. [CrossRef] [PubMed]
Costescu, R. M., Cahill, D. G., Fabreguette, F. H., Sechrist, Z. A., and George, S. M., 2004, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates,” Science, 303(5660), pp. 989–990. [CrossRef] [PubMed]
Asheghi, M., Kurabayashi, K., Kasnavi, R., and Goodson, K. E., 2002, “Thermal Conduction in Doped Single-Crystal Silicon Films,” J. Appl. Phys., 91(8), pp. 5079–5088. [CrossRef]
Asheghi, M., Leung, Y. K., Wong, S. S., and Goodson, K. E., 1997, “Phonon-Boundary Scattering in Thin Silicon Layers,” Appl. Phys. Lett., 71(13), pp. 1798–1800. [CrossRef]
Uma, S., Mcconnell, A. D., Asheghi, M., Kurabayashi, K., and Goodson, K. E., 2001, “Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers,” Int. J. Thermophys., 22(2), pp. 605–616. [CrossRef]
Ju, Y. S., and Goodson, K. E., 1999, “Phonon Scattering in Silicon Films With Thickness of Order 100 nm,” Appl. Phys. Lett., 74(20), pp. 3005–3007. [CrossRef]
Cuffe, J., Chavez, E., Shchepetov, A., Chapuis, P. O., El Boudouti, E. H., Alzina, F., Kehoe, T., Gomis-Bresco, J., Dudek, D., Pennec, Y., Djafari-Rouhani, B., Prunnila, M., Ahopelto, J., and Torres, C. M. S., 2012, “Phonons in Slow Motion: Dispersion Relations in Ultrathin Si Membranes,” Nano Lett., 12(7), pp. 3569–3573. [CrossRef] [PubMed]
Cuffe, J., Chavez, E., Chapuis, P.-O., Alzina, F., Sotomayor Torres, C. M., Ristow, O., Hettich, M., Dekorsy, T., Shchepetov, A., Prunnila, M., and Ahopelto, J., 2013, “Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes,” Phys. Rev. Lett., 110(9), p. 095503. [CrossRef] [PubMed]
Johnson, J. A., Maznev, A. A., Cuffe, J., Eliason, J. K., Minnich, A. J., Kehoe, T., Torres, C. M. S., Chen, G., and Nelson, K. A., 2013, “Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane,” Phys. Rev. Lett., 110(2), p. 025901. [CrossRef] [PubMed]
Chen, G., 1998, “Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices,” Phys. Rev. B, 57(23), pp. 14958–14973. [CrossRef]
Chen, G., 2002, “Ballistic-Diffusive Equations for Transient Heat Conduction From Nano to Macroscales,” ASME J. Heat Transfer, 124(2), pp. 320–328. [CrossRef]
Ren, S. Y., and Dow, J. D., 1982, “Thermal Conductivity of Superlattices,” Phys. Rev. B, 25(6), pp. 3750–3755. [CrossRef]
Colvard, C., Gant, T. A., Klein, M. V., Merlin, R., Fischer, R., Morkoc, H., and Gossard, A. C., 1985, “Folded Acoustic and Quantized Optic Phonons in (GaAl)As Superlattices,” Phys. Rev. B, 31(4), pp. 2080–2091. [CrossRef]
Hyldgaard, P., and Mahan, G. D., 1997, “Phonon Superlattice Transport,” Phys. Rev. B, 56(17), pp. 10754–10757. [CrossRef]
Chen, G., 1999, “Phonon Wave Heat Conduction in Thin Films and Superlattices,” ASME J. Heat Transfer, 121(4), pp. 945–953. [CrossRef]
Ward, A., and Broido, D. A., 2008, “Intrinsic Lattice Thermal Conductivity of Si/Ge and GaAs/AlAs Superlattices,” Phys. Rev. B, 77(24), p. 245328. [CrossRef]
Simkin, M. V., and Mahan, G. D., 2000, “Minimum Thermal Conductivity of Superlattices,” Phys. Rev. Lett., 84(5), pp. 927–930. [CrossRef] [PubMed]
Yang, B., and Chen, G., 2003, “Partially Coherent Phonon Heat Conduction in Superlattices,” Phys. Rev. B, 67(19), p. 195311. [CrossRef]
Daly, B. C., Maris, H. J., Imamura, K., and Tamura, S., 2002, “Molecular Dynamics Calculation of the Thermal Conductivity of Superlattices,” Phys. Rev. B, 66(2), p. 024301. [CrossRef]
Yu, J. K., Mitrovic, S., Tham, D., Varghese, J., and Heath, J. R., 2010, “Reduction of Thermal Conductivity in Phononic Nanomesh Structures,” Nat. Nanotechnol., 5(10), pp. 718–721. [CrossRef] [PubMed]
Luckyanova, M. N., Garg, J., Esfarjani, K., Jandl, A., Bulsara, M. T., Schmidt, A. J., Minnich, A. J., Chen, S., Dresselhaus, M. S., Ren, Z., Fitzgerald, E. A., and Chen, G., 2012, “Coherent Phonon Heat Conduction in Superlattices,” Science, 338(6109), pp. 936–939. [CrossRef] [PubMed]
Katika, K. M., and Pilon, L., 2008, “The Effect of Nanoparticles on the Thermal Conductivity of Crystalline Thin Films at Low Temperatures,” J. Appl. Phys., 103(11), p. 114308. [CrossRef]
Kim, W., and Majumdar, A., 2006, “Phonon Scattering Cross Section of Polydispersed Spherical Nanoparticles,” J. Appl. Phys., 99(8), p. 084306. [CrossRef]
McGaughey, A. J. H., and Jain, A., 2012, “Nanostructure Thermal Conductivity Prediction by Monte Carlo Sampling of Phonon Free Paths,” Appl. Phys. Lett., 100(6), p. 061911. [CrossRef]
Little, W. A., 1959, “The Transport of Heat Between Dissimilar Solids at Low Temperatures,” Can. J. Phys., 37(3), pp. 334–349. [CrossRef]
Swartz, E., and Pohl, R., 1989, “Thermal Boundary Resistance,” Rev. Mod. Phys., 61(3), pp. 605–668. [CrossRef]
Schelling, P., Phillpot, S., and Keblinski, P., 2002, “Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation,” Appl. Phys. Lett., 80(14), pp. 2484–2486. [CrossRef]
Sun, L., and Murthy, J., 2010, “Molecular Dynamics Simulation of Phonon Scattering at Silicon/Germanium Interfaces,” ASME J. Heat Transfer, 132(10), p. 102403. [CrossRef]
Zuckerman, N., and Lukes, J., 2008, “Acoustic Phonon Scattering From Particles Embedded in an Anisotropic Medium: A Molecular Dynamics Study,” Phys. Rev. B, 77(9), p. 094302. [CrossRef]
Tian, Z. T., White, B. E., and Sun, Y., 2010, “Phonon Wave-Packet Interference and Phonon Tunneling Based Energy Transport Across Nanostructured Thin Films,” Appl. Phys. Lett., 96(26), p. 263113. [CrossRef]
Young, D., and Maris, H., 1989, “Lattice Dynamics Calculation of the Kapitza Resistance Between FCC Lattices,” Phys. Rev. B, 40(6), pp. 3685–3693. [CrossRef]
Pettersson, S., and Mahan, G., 1990, “Theory of the Thermal Boundary Resistance Between Dissimilar Lattices,” Phys. Rev. B, 42(12), pp. 7386–7390. [CrossRef]
Zhao, H., and Freund, J., 2005, “Lattice-Dynamical Calculation of Phonon Scattering at Ideal Si-Ge Interfaces,” J. Appl. Phys., 97(2), p. 024903. [CrossRef]
Wang, J., and Wang, J., 2006, “Mode-Dependent Energy Transmission Across Nanotube Junctions Calculated With a Lattice Dynamics Approach,” Phys. Rev. B, 74(5), p. 054303. [CrossRef]
Zhang, W., Fisher, T., and Mingo, N., 2007, “The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport,” Numer. Heat Transfer, Part B, 51(4), pp. 333–349. [CrossRef]
Volz, S., ed., 2009, Thermal Nanosystems and Nanomaterials, Vol. 118, Springer, Heidelberg, Germany, pp. 1–587.
Zhang, W., Fisher, T., and Mingo, N., 2007, “Simulation of Interfacial Phonon Transport in Si-Ge Heterostructures Using an Atomistic Green's Function Method,” ASME J. Heat Transfer, 129(4), pp. 483–491. [CrossRef]
Hopkins, P., Norris, P., Tsegaye, M., and Ghosh, A., 2009, “Extracting Phonon Thermal Conductance Across Atomic Junctions: Nonequilibrium Green's Function Approach Compared to Semiclassical Methods,” J. Appl. Phys., 106(6), p. 063503. [CrossRef]
Li, X., and Yang, R., 2012, “Size-Dependent Phonon Transmission Across Dissimilar Material Interfaces,” J. Phys.: Condens. Matter, 24(15), p. 155302. [CrossRef] [PubMed]
Mingo, N., Stewart, D., Broido, D., and Srivastava, D., 2008, “Phonon Transmission Through Defects in Carbon Nanotubes From First Principles,” Phys. Rev. B, 77(3), p. 033418. [CrossRef]
Stewart, D., Savic, I., and Mingo, N., 2009, “First-Principles Calculation of the Isotope Effect on Boron Nitride Nanotube Thermal Conductivity,” Nano Lett., 9(1), pp. 81–84. [CrossRef] [PubMed]
Tian, Z. T., Esfarjani, K., and Chen, G., 2012, “Enhancing Phonon Transmission Across a Si/Ge Interface by Atomic Roughness: First-Principles Study With the Green's Function Method,” Phys. Rev. B, 86(23), p. 235304. [CrossRef]
Zhao, H., and Freund, J., 2009, “Phonon Scattering at a Rough Interface Between Two FCC Lattices,” J. Appl. Phys., 105(1), p. 013515. [CrossRef]
Nan, C. W., Birringer, R., Clarke, D. R., and Gleiter, H., 1997, “Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance,” J. Appl. Phys., 81(10), pp. 6692–6699. [CrossRef]
Minnich, A., and Chen, G., 2007, “Modified Effective Medium Formulation for the Thermal Conductivity of Nanocomposites,” Appl. Phys. Lett., 91(7), p. 073105. [CrossRef]
Ordonez-Miranda, J., Yang, R. G., and Alvarado-Gil, J. J., 2011, “On the Thermal Conductivity of Particulate Nanocomposites,” Appl. Phys. Lett., 98(23), p. 233111. [CrossRef]
Maiti, A., Mahan, G. D., and Pantelides, S. T., 1997, “Dynamical Simulations of Nonequilibrium Processes—Heat Flow and the Kapitza Resistance Across Grain Boundaries,” Solid State Commun., 102(7), pp. 517–521. [CrossRef]
Schelling, P. K., Phillpot, S. R., and Keblinski, P., 2004, “Kapitza Conductance and Phonon Scattering at Grain Boundaries by Simulation,” J. Appl. Phys., 95(11), pp. 6082–6091. [CrossRef]
Chalopin, Y., Esfarjani, K., Henry, A., Volz, S., and Chen, G., 2012, “Thermal Interface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics,” Phys. Rev. B, 85(19), p. 195302. [CrossRef]
Tian, Z. T., 2009, “Nanoscale Heat Transfer in Argon-Like Solids via Molecular Dynamics Simulations,” Ph.D. thesis, State University of New York at Binghamton, Binghamton, NY.
Roberts, N. A., Walker, D. G., and Li, D. Y., 2009, “Molecular Dynamics Simulation of Thermal Conductivity of Nanocrystalline Composite Films,” Int. J. Heat Mass Transfer, 52(7–8), pp. 2002–2008. [CrossRef]
Tian, Z. T., Kim, S., Sun, Y., and White, B., 2009, “A Molecular Dynamics Study of Thermal Conductivity in Nanocomposites via the Phonon Wave Packet Method,” Proceedings of the ASME InterPACK Conference 2009, Vol. 1, pp. 607–615. [CrossRef]
Prasher, R., 2006, “Thermal Conductivity of Composites of Aligned Nanoscale and Microscale Wires and Pores,” J. Appl. Phys., 100(3), p. 034307. [CrossRef]
Jeng, M.-S., Yang, R., Song, D., and Chen, G., 2008, “Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation,” ASME J. Heat Transfer, 130(4), p. 042410. [CrossRef]
Peraud, J.-P. M., and Hadjiconstantinou, N. G., 2011, “Efficient Simulation of Multidimensional Phonon Transport Using Energy-Based Variance-Reduced Monte Carlo Formulations,” Phys. Rev. B, 84(20), p. 205331. [CrossRef]
Péraud, J.-P. M., and Hadjiconstantinou, N. G., 2012, “An Alternative Approach to Efficient Simulation of Micro/Nanoscale Phonon Transport,” Appl. Phys. Lett., 101(15), p. 153114. [CrossRef]
Schmidt, A. J., Collins, K. C., Minnich, A. J., and Chen, G., 2010, “Thermal Conductance and Phonon Transmissivity of Metal-Graphite Interfaces,” J. Appl. Phys., 107(10), p. 104907. [CrossRef]
Prasher, R., 2009, “Acoustic Mismatch Model for Thermal Contact Resistance of van der Waals Contacts,” Appl. Phys. Lett., 94(4), p. 041905. [CrossRef]
Min, G., and Rowe, D., 2000, “Improved Model for Calculating the Coefficient of Performance of a Peltier Module,” Energy Convers. Manage., 41(2), pp. 163–171. [CrossRef]
Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., and Venkatasubramanian, R., 2009, “On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics,” Nat. Nanotechnol., 4(4), pp. 235–238. [CrossRef] [PubMed]
Hatzikraniotis, E., Zorbas, K., Samaras, I., Kyratsi, T., and Paraskevopoulos, K., 2010, “Efficiency Study of a Commercial Thermoelectric Power Generator (TEG) Under Thermal Cycling,” J. Electron. Mater., 39(9), pp. 2112–2116. [CrossRef]
Barako, M. T., Park, W., Marconnet, A. M., Asheghi, M., and Goodson, K. E., 2012, “A Reliability Study With Infrared Imaging of Thermoelectric Modules Under Thermal Cycling,” Proceedings of the IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, pp. 86–92. [CrossRef]
Kashi, S., Keshavarz, M., Vasilevskiy, D., Masut, R., and Turenne, S., 2012, “Effect of Surface Preparation on Mechanical Properties of Ni Contacts on Polycrystalline (Bi1−xSbx)2(Te1−ySey)3 Alloys,” J. Electron. Mater., pp. 1227–1231. [CrossRef]
Feng, H.-P., Yu, B., Chen, S., Collins, K., He, C., Ren, Z. F., and Chen, G., 2011, “Studies on Surface Preparation and Smoothness of Nanostructured Bi2Te3-Based Alloys by Electrochemical and Mechanical Methods,” Electrochim. Acta, 56(8), pp. 3079–3084. [CrossRef]
Gao, Y., Marconnet, A., Panzer, M., Leblanc, S., Dogbe, S., Ezzahri, Y., Shakouri, A., and Goodson, K., 2010, “Nanostructured Interfaces for Thermoelectrics,” J. Electron. Mater., 39(9), pp. 1456–1462. [CrossRef]
Mishra, H., Cola, B. A., Rawat, V., Amama, P. B., Biswas, K. G., Xu, X., Fisher, T. S., and Sands, T. D., 2009, “Thermomechanical and Thermal Contact Characteristics of Bismuth Telluride Films Electrodeposited on Carbon Nanotube Arrays,” Adv. Mater., 21(42), pp. 4280–4283. [CrossRef]
Yazawa, K., and Shakouri, A., 2011, “Cost-Efficiency Trade-Off and the Design of Thermoelectric Power Generators,” Environ. Sci. Technol., 45(17), pp. 7548–7553. [CrossRef] [PubMed]
Kraemer, D., Poudel, B., Feng, H.-P., Caylor, J. C., Yu, B., Yan, X., Ma, Y., Wang, X., Wang, D., Muto, A., McEnaney, K., Chiesa, M., Ren, Z., and Chen, G., 2011, “High-Performance Flat-Panel Solar Thermoelectric Generators With High Thermal Concentration,” Nature Mater., 10(7), pp. 532–538. [CrossRef]
Kraemer, D., McEnaney, K., Chiesa, M., and Chen, G., 2012, “Modeling and Optimization of Solar Thermoelectric Generators for Terrestrial Applications,” Sol. Energy, 86(5), pp. 1338–1350. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Figure of merit ZT of selected state of the art thermoelectric materials versus temperature for (a) p-type and (b) n-type. (p-type: Si0.8Ge0.2 [33], Bi0.5Sb1.5Te3 [88], 2% Tl-doped PbTe [59], Na-doped PbTe0.85Se0.15 [30], Na-doped PbTe-PbS 12% [90], half-Heusler Hf0.8Ti0.2CoSb0.8Sn0.2 [50]; n-type: Si0.8Ge0.2 [32], multifilled skutterudites BaxLayYbzCo4Sb12 [39], half-Heusler Hf0.75Ti0.25NiSn0.99Sb0.01 [49], 1% Al-doped PbSe [60], Bi2Te2.7Se0.3 [96].)

Grahic Jump Location
Fig. 2

(a) Thermal conductivity versus temperature from first-principles calculations (lines) and experimental measurements (symbols), and (b) normalized cumulative thermal conductivity as a function of phonon MFPs at 300 K from first-principles calculations for different bulk crystalline materials, Si [125], Ge [122], GaAs [131], ZrCoSb [129], PbTe [128], PbSe [128], and Bi [133]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In