0
Technical Briefs

Design and Optimization of Composite Rectangular Fins Using the Relative Inverse Thermal Admittance

[+] Author and Article Information
Juan P. Luna–Abad

Área de Máquinas y Motores Térmicos,
Departamento de Ingeniería Térmica y de Fluidos
Universidad Politécnica de Cartagena,
Edificio de Ingeniería Civil y Oceánica,
Paseo Alfonso XIII, 52,
30203 Cartagena 30203,
Murcia, Spain
e-mail: jp.lunaabad@upct.es,

Francisco Alhama

Departamento de Física Aplicada,
Universidad Politécnica de Cartagena,
Cartagena 30202, Murcia, Spain,
e-mail: paco.alhama@upct.es

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the Journal of Heat Transfer. Manuscript received July 4, 2012; final manuscript received March 7, 2013; published online July 18, 2013. Assoc. Editor: Giulio Lorenzini.

J. Heat Transfer 135(8), 084504 (Jul 18, 2013) (4 pages) Paper No: HT-12-1349; doi: 10.1115/1.4024016 History: Received July 04, 2012; Revised March 07, 2013

The concept of relative inverse admittance applied to composite fins optimization in the case of longitudinal rectangular fins under 2D heat conduction is presented in this work. Here, different values for convective conditions at the fin and composite layer surfaces are used and the influence of the kc/kf ratio and composite thickness in optimum geometry is determined. The optimization process is carried out through universal graphs in which the range of parameters covers most of the practical cases a designer will find. Relative inverse admittance is applied in a general form and emerges as an easily used tool for optimizing composite fins.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Fig. 1

Composite fin. Geometrical and thermal parameters.

Grahic Jump Location
Fig. 2

Optimum fin thickness versus fin core volume. kc/kf = 1/100 (a) for h/kf = 0.1 m−1, curve (1): ec = 0.1 mm, curve (2): ec = 0.2 mm, curve (3): ec = 0.5 mm, curve (4): ec = 1 mm. (b) for h/kf = 1 m−1, curve (1): ec = 0.1 mm, curve (2): ec = 0.2 mm, curve (3): ec = 0.5 mm, curve (4): ec = 1 mm. (c) for h/kf = 10 m−1, curve (1): ec = 0.1 mm, curve (2): ec = 0.2 mm, curve (3): ec = 0.5 mm, curve (4): ec = 1 mm

Grahic Jump Location
Fig. 3

Optimum fin thickness versus fin volume. kc/kf = 100/1 (a) for h/kf = 0.1 m−1, curve (1): ec = 0.2 mm, curve (2): ec = 0.5 mm, curve (3): ec = 1 mm, (b) for h/kf = 1 m−1, curve (1): ec = 0.2 mm, curve (2): ec = 0.5 mm, curve (3): ec = 1 mm, (c) for h/kf = 10 m−1, curve (1): ec = 0.2 mm, curve (2): ec = 0.5 mm, curve (3): ec = 1 mm

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In