Research Papers

Thermophysical Properties and Pool Boiling Characteristics of Water-in-Polyalphaolefin Nanoemulsion Fluids

[+] Author and Article Information
Bao Yang

Department of Mechanical Engineering,
University of Maryland,
College Park, MD 20742

Boualem Hammouda

Center for Neutron Research,
National Institute of Standards and Technology,
Gaithersburg, MD 20899

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received June 29, 2012; final manuscript received January 17, 2013; published online July 26, 2013. Guest Editors: G. P. “Bud” Peterson and Zhuomin Zhang.

J. Heat Transfer 135(9), 091303 (Jul 26, 2013) (6 pages) Paper No: HT-12-1328; doi: 10.1115/1.4024423 History: Received June 29, 2012; Revised January 17, 2013

In this work, thermophysical properties, microstructure, and pool boiling characteristics of water-in-polyalphaolefin (PAO) nanoemulsion fluids have been measured in the water concentration range of 0–10.3 vol. %, in order to gain basic data for nanoemulsion boiling. Water-in-PAO nanoemulsion fluids are formed via self-assembly with surfactant: sodium sullfosuccinate (AOT). Thermal conductivity of these fluids is found to increase monotonically with water concentration, as expected from the Maxwell equation. Unlike thermal conductivity, their dynamic viscosity first increases with water concentration, reaches a maximum at 5.3 vol. %, and then decreases. The observed maximum viscosity could be attributed to the attractive forces among water droplets. The microstructures of the water-in-PAO nanoemulsion fluids are measured via the small-angle neutron scattering (SANS) technique, which shows a transition from sphere to elongated cylinder when the water concentration increases above 5.3 vol. %. The pool boiling heat transfer of these water-in-PAO nanoemulsion fluids is measured on a horizontal Pt wire at room temperature (25 °C, subcooled condition). One interesting phenomenon observed is that the pool boiling follows two different curves randomly when the water concentration is in the range of 5.3 vol. % to 7.8 vol. %.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Eastman, L. J., Choi, S. U. S., Li, S., and Thompson, L. J., 1997, “Enhanced Thermal Conductivity Through Development of Nanofluids,” Nanocryst. Nanocomp. Mater. II, 12, pp. 457–468.
Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J., 2001, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,” Appl. Phys. Lett., 78(6), pp. 718–720. [CrossRef]
Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A., 2001, “Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,” Appl. Phys. Lett., 79(14), pp. 2252–2254. [CrossRef]
You, S. M., Kim, J. H., and Kim, K. H., 2003, “Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer,” Appl. Phys. Lett., 83(16), pp. 3374–3376. [CrossRef]
Wen, D. S., and Ding, Y. L., 2004, “Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotubes Nanofluids),” J. Thermophys. Heat Transfer, 18(4), pp. 481–485. [CrossRef]
Li, C. H., and Peterson, G. P., 2006, “Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids),” J. Appl. Phys., 99(8), p. 084314. [CrossRef]
Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., and Keblinski, P., 2006, “Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids,” Appl. Phys. Lett., 89(14), p. 143119. [CrossRef]
Yang, B., and Han, Z. H., 2006, “Thermal Conductivity Enhancement in Water-in-FC72 Nanoemulsion Fluids,” Appl. Phys. Lett., 88(26), p. 261914. [CrossRef]
Yang, Y., Grulke, E. A., Zhang, Z. G., and Wu, G., 2006, “Thermal and Rheological Properties of Carbon Nanotube-in-Oil Dispersions,” J. Appl. Phys., 99(11), p. 114307. [CrossRef]
Yang, B., and Han, Z. H., 2006, “Temperature-Dependent Thermal Conductivity of Nanorod-Based Nanofluids,” Appl. Phys. Lett., 89(8), p. 083111. [CrossRef]
Han, Z. H., and Yang, B., 2008, “Thermophysical Characteristics of Water-in-FC72 Nanoemulsion Fluids,” Appl. Phys. Lett., 92(1), p. 013118. [CrossRef]
Xu, J. J., Wu, C. W., and Yang, B., 2010, “Thermal- and Phase-Change Characteristics of Self-Assembled Ethanol/Polyalphaolefin Nanoemulsion Fluids,” J. Thermophys. Heat Transfer, 24(1), pp. 208–211. [CrossRef]
Xu, J., Yang, B., and Hammouda, B., 2011, “Thermal Conductivity and Viscosity of Self-Assembled Alcohol/Polyalphaolefin Nanoemulsion Fluids,” Nanoscale Res. Lett., 6, pp. 274–280. [CrossRef]
Wu, C., Cho, T. J., Xu, J., Lee, D., Yang, B., and Zachariah, M. R., 2010, “Effect of Nanoparticle Clustering on the Effective Thermal Conductivity of Concentrated Silica Colloids,” Phys. Rev. E, 81(1), p. 011406. [CrossRef]
Xu, J., and Zhang, Y., 2009, “Analysis of Heat Transfer During Liquid-Vapor Pulsating Flow in a U-Shaped Miniature Channel,” J. Enhanced Heat Transfer, 16(4), pp. 367–385. [CrossRef]
Xu, J., Zhang, Y., and Ma, H., 2009, “Effect of Internal Wick Structure on Liquid-Vapor Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe,” ASME J. Heat Transfer, 131(12), p. 121012. [CrossRef]
Bergles, A. E., 1969, “Influence of Heated-Surface Vibration on Pool Boiling,” ASME J. Heat Transfer, 91(1), pp. 152–154. [CrossRef]
Bradfiel,W. S., 1967, “On Effect of Subcooling on Wall Superheat in Pool Boiling,” ASME J. Heat Transfer, 89(3), pp. 269–270. [CrossRef]
Bulanov, N. V., Skripov, V. P., and Khmylnin, V. A., 1984, “Heat Transfer to Emulsion With Superheating of Its Disperse Phase,” J. Eng. Phys., pp. 1–3.
Bulanov, N. V., Skripov, V. P., and Khmylnin, V. A., 1993, “Heat Transfer to Emulsion With a Low-Boiling Disperse Phase,” Heat Transfer Res., pp. 786–789.
Bulanov, N. V., 2001, “An Analysis of the Heat Flux Density Under Conditions of Boiling Internal Phase of Emulsion,” High Temp., 39(3), pp. 462–469. [CrossRef]
Bulanov, N. V., and Gasanov, B. M., 2005, “Experimental Setup for Studying the Chain Activation of Low-Temperature Boiling Sites in Superheated Liquid Droplets,” Colloid J., 67(5), pp. 531–536. [CrossRef]
Bulanov, N. V., Gasanov, B. M., and Turchaninova, E. A., 2006, “Results of Experimental Investigation of Heat Transfer With Emulsions With Low-Boiling Disperse Phase,” High Temp., 44(2), pp. 267–282. [CrossRef]
Bulanov, N. V., and Gasanov, B. M., 2008, “Peculiarities of Boiling of Emulsions With a Low-Boiling Disperse Phase,” Int. J. Heat Mass Transfer, 51(7–8), pp. 1628–1632. [CrossRef]
Henry, C. D., and Kim, J. H., 2004, “A Study of the Effects of Heater Size, Subcooling, and Gravity Level on Pool Boiling Heat Transfer,” Int. J. Heat Fluid Flow, 25(2), pp. 262–273. [CrossRef]
Kim, J. B., Oh, B. D., and Kim, M. H., 2006, “Experimental Study of Pool Temperature Effects on Nucleate Pool Boiling,” Int. J. Multiphase Flow, 32(2), pp. 208–231. [CrossRef]
Kim, S. J., Bang, I. C., Buongiorno, J., and Hu, L. W., 2007, “Surface Wettability Change During Pool Boiling of Nanofluids and its Effect on Critical Heat Flux,” Int. J. Heat Mass Transfer, 50(19–20), pp. 4105–4116. [CrossRef]
Kim, B. H., Beskok, A., and Cagin, T., 2008, “Molecular Dynamics Simulations of Thermal Resistance at the Liquid-Solid Interface,” J. Chem. Phys., 129(17), p. 174701. [CrossRef]
Rosele, M. L., 2010, “Boiling of Dilute Emulsions,” Ph.D. dissertation, University of Minnesota, Twin Cities, MN.
Roesle, M. L., and Kulacki, F. A., 2010, “Boiling of Dilute Emulsions-Toward a New Modeling Framework,” Ind. Eng. Chem. Res., 49(11), pp. 5188–5196. [CrossRef]
Shai, I., and Rohsenow, W. M., 1969, “Mechanism of and Stability Criterion for Nucleate Pool Boiling of Sodium,” ASME J. Heat Transfer, 91(3), pp. 315–328. [CrossRef]
Shepherd, J. E., and Sturtevant, B., 1982, “Rapid Evaporation at the Superheat Limit,” J. Fluid Mech., 121, pp. 379–402. [CrossRef]
Kandlikar, S. G., Shoji, M., and Dhir, V. K., 1999, Handbook of Phase Change:Boiling and Condensation, Taylor & Francis, London.
Kandlikar, S. G., 2001, “A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation,” ASME J. Heat Transfer, 123(6), pp. 1071–1079. [CrossRef]
Kumar, P., and Mittal, K. L., 1999, Handbook of Microemulsion Science and Technology, Marcel Dekker, New York.
Moulik, S. P., and Ray, S., 1994, “Thermodynamics of Clustering of Droplets in Water/AOT/Heptane Microemulsion,” Pure Appl. Chem., 66(3), pp. 521–525. [CrossRef]
Bergenholtz, J., Romagnoli, A. A., and Wagner, N. J., 1995, “Viscosity, Microstructure, and Interparticle Potential of AOT/H2O/N-Decane Inverse Microemulsions,” Langmuir, 11(5), pp. 1559–1570. [CrossRef]
Batra, U., Russel, W. B., and Huang, J. S., 1999, “Viscosity Anomaly and Charge Fluctuations in Dilute AOT Microemulsions With X < 20,” Langmuir, 15(11), pp. 3718–3725. [CrossRef]
Hirai, M., Kawai-Hirai, R., Sanada, M., Iwase, H., and Mitsuya, S., 1999, “Characteristics of AOT Microemulsion Structure Depending on a Polar Solvents,” J. Phys. Chem. B, 103(44), pp. 9658–9662. [CrossRef]
Hirai, M., Hirai, R. K., Iwase, H., Arai, S., Mitsuya, S., Takeda, T., Seto, H., and Nagao, M., 1999, “Dynamics of w/o AOT Microemulsions Studied by Neutron Spin Echo,” J. Phys. Chem. Solids, 60(8–9), pp. 1359–1361. [CrossRef]
Lawrence, M. J., and Warisnoicharoen, W., 2006, “Recent Advances in Microemulsions as Drug Delivery Vehicles,” Nanoparticles as Drug Carriers, Imperial College Press, London.
Tyndall, J., 1868, “On the Blue Colour of the Sky, the Polarization of Sky-Light, and on the Polarization of Light by Cloudy Matter Generally,” Proc. R. Soc. London, 17, pp. 223–233. [CrossRef]
He, G. S., Qin, H.-Y., and Zheng, Q., 2009, “Rayleigh, Mie, and Tyndall Scatterings of Polystyrene Microspheres in Water: Wavelength, Size, and Angle Dependences,” J. Appl. Phys., 105(2), p. 023110. [CrossRef]
Yang, B., Liu, W. L., Liu, J. L., Wang, K. L., and Chen, G., 2002, “Measurements of Anisotropic Thermoelectric Properties in Superlattices,” Appl. Phys. Lett., 81(19), pp. 3588–3590. [CrossRef]
Cahill, D. G., 1990, “Thermal-Conductivity Measurement From 30-K to 750-K—The 3-Omega Method,” Rev. Sci. Instrum., 61(2), pp. 802–808. [CrossRef]
Chevron Phillips Chemical LP, 2002, Synfluid PAO Databook, The Woodlands, TX.
Hammouda, B., 2010, “SANS From Polymers-Review of the Recent Literature,” Polym. Rev., 50(1), pp. 14–39. [CrossRef]
Liu, J. C., Li, G. Z., and Han, B. X., 2001, “Characteristics of AOT Microemulsion Structure: A Small Angle X-Ray Scattering Study,” Chin. Chem. Lett., 12(11), pp. 1023–1026.
Howe, A. M., Toprakcioglu, C., Dore, J. C., and Robinson, B. H., 1986, “Small-Angle Neutron-Scattering Studies of Microemulsions Stabilized by Aerosol-OT 3. The Effect of Additives on Phase-Stability and Droplet Structure,” J. Chem. Soc., Faraday Trans. 1, 82, pp. 2411–2422. [CrossRef]
Bisal, S., Bhattacharya, P. K., and Moulik, S. P., 1990, “Conductivity Study of Microemulsions—dependence of Structural Behavior of Water Oil Systems on Surfactant, Cosurfactant, Oil, and Temperature,” J. Phys. Chem., 94(1), pp. 350–355. [CrossRef]
Nagao, M., Seto, H., Shibayama, M., and Yamada, N. L., 2003, “Small-Angle Neutron Scattering Study of Droplet Density Dependence of the Water-in-Oil Droplet Structure in a Ternary Microemulsion,” J. Appl. Crystallogr., 36, pp. 602–606. [CrossRef]
Kotlarchyk, M., Chen, S. H., and Huang, J. S., 1982, “Temperature-Dependence of Size and Polydispersity in a 3-Component Micro-Emulsion by Small-Angle Neutron-Scattering,” J. Phys. Chem., 86(17), pp. 3273–3276. [CrossRef]
Hammouda, B., Krueger, S., and Glinka, C. J., 1993, “Small-Angle Neutron-Scattering at the National-Institute-of-Standards-and-Technology,” J. Res. Natl. Inst. Stand. Technol., 98(1), pp. 31–46. [CrossRef]
Gradzielski, M., and Langevin, D., 1996, “Small-Angle Neutron Scattering Experiments on Microemulsion Droplets: Relation to the Bending Elasticity of the Amphiphilic Film,” J. Mol. Struct., 383(1–3), pp. 145–156. [CrossRef]
Marszalek, J., Pojman, J. A., and Page, K. A., 2008, “Neutron Scattering Study of the Structural Change Induced by Photopolymerization of AOT/D(2)O/Dodecyl Acrylate Inverse Microemulsions,” Langmuir, 24(23), pp. 13694–13700. [CrossRef]
Buongiorno, J., Venerus, D. C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., Tolmachev, Y. V., Keblinski, P., Hu, L.-W., Alvarado, J. L., Bang, I. C., Bishnoi, S. W., Bonetti, M., Botz, F., Cecere, A., Chang, Y., Chen, G., Chen, H., Chung, S. J., Chyu, M. K., Das, S. K., Di Paola, R., Ding, Y., Dubois, F., Dzido, G., Eapen, J., Escher, W., Funfschilling, D., Galand, Q., Gao, J., Gharagozloo, P. E., Goodson, K. E., Gutierrez, J. G., Hong, H., Horton, M., Hwang, K. S., Iorio, C. S., Jang, S. P., Jarzebski, A. B., Jiang, Y., Jin, L., Kabelac, S., Kamath, A., Kedzierski, M. A., Kieng, L. G., Kim, C., Kim, J.-H., Kim, S., Lee, S. H., Leong, K. C., Manna, I., Michel, B., Ni, R., Patel, H. E., Philip, J., Poulikakos, D., Reynaud, C., Savino, R., Singh, P. K., Song, P., Sundararajan, T., Timofeeva, E., Tritcak, T., Turanov, A. N., Van Vaerenbergh, S., Wen, D., Witharana, S., Yang, C., Yeh, W.-H., Zhao, X.-Z., and Zhou, S.-Q., 2009, “A Benchmark Study on the Thermal Conductivity of Nanofluids,” J. Appl. Phys., 106(9), p. 094312. [CrossRef]
Maxwell, J. C., 1904, “A Treatise on Electricity and Magnetism,” Oxford University Press, Cambridge, UK.
Nan, C. W., Birringer, R., Clarke, D. R., and Gleiter, H., 1997, “Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance,” J. Appl. Phys., 81(10), pp. 6692–6699. [CrossRef]
Alexandridis, P., Holzwarth, J. F., and Hatton, T. A., 1995, “Thermodynamics of Droplet Clustering in Percolating AOT Water-in-Oil Microemulsions,” J. Phys. Chem., 99(20), pp. 8222–8232. [CrossRef]
Hammouda, B., 2010, “A New Guinier-Porod Model,” J. Appl. Crystallogr., 43, pp. 716–719. [CrossRef]
Blokhuis, E. M., and Sager, W. F. C., 2001, “Sphere to Cylinder Transition in a Single Phase Microemulsion System: A Theoretical Investigation,” J. Chem. Phys., 115(2), pp. 1073–1085. [CrossRef]
Langevin, D., 1992, “Micelles and Microemulsion,” Annu. Rev. Phys. Chem., 43, pp. 341–369. [CrossRef]
Hodgson, A. S., 1969, “hysteresis Effects in Surface Boiling of Water,” ASME J. Heat Transfer, 91(1), pp. 160–162. [CrossRef]
Celata, G. P., Cumo, M., and Setaro, T., 1992, “hysteresis Phenomena in Subcooled Flow Boiling of Well-Wetting Fluids,” Exp. Heat Transfer, 5(4), pp. 253–275. [CrossRef]


Grahic Jump Location
Fig. 1

Water-in-PAO nanoemulsion fluid (bottle A) and pure PAO (bottle B). The Tyndall effect can be seen in the nanoemulsion fluid (bottle A).

Grahic Jump Location
Fig. 2

Schematic of pool boiling test apparatus

Grahic Jump Location
Fig. 3

Thermal conductivity of water-in-PAO nanoemulsion fluids versus water volume fraction. The prediction from the Maxwell equation is shown for comparison.

Grahic Jump Location
Fig. 4

Dynamic viscosity of water-in-PAO nanoemulsion fluids versus water volume fraction

Grahic Jump Location
Fig. 5

Molecular structure of AOT-Na+ surfactant

Grahic Jump Location
Fig. 6

Small-angle neutron scattering curves for water-in-PAO nanoemulsion fluids: water volume concentration from 1.8% to 10.3%. Three different symbols represent three different scattering curves.

Grahic Jump Location
Fig. 7

Pool boiling curves for water-in-PAO nanoemulsion fluids: water volume fraction from 1.8% to 4.5%. The arrows in the figure represent where the burn out of wire occurs. Tsaturation is 100 °C for water at 1 atm.

Grahic Jump Location
Fig. 8

Pool boiling curves for water-in-PAO nanoemulsion fluids: water volume concentration from 5.3% to 10.3%. The arrows in the figure represent where the burn out of wire occurs. Tsaturation is 100 °C for water at 1 atm.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In