0
Research Papers

Mean Free Path Effects on the Experimentally Measured Thermal Conductivity of Single-Crystal Silicon Microbridges

[+] Author and Article Information
Timothy S. English

Engineering Sciences Center,
Sandia National Laboratories,
Albuquerque, NM 87185;
Department of Mechanical Engineering,
Stanford University,
Stanford, CA 94305
e-mail: tsengli@sandia.gov;
englisht@stanford.edu

Leslie M. Phinney

Engineering Sciences Center,
Sandia National Laboratories,
Albuquerque, NM 87185
e-mail: lmphinn@sandia.gov

Patrick E. Hopkins

Department of Mechanical and
Aerospace Engineering,
University of Virginia,
Charlottesville, VA 22904
e-mail: phopkins@virginia.edu

Justin R. Serrano

Engineering Sciences Center,
Sandia National Laboratories,
Albuquerque, NM 87185
e-mail: jrserra@sandia.gov

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received July 26, 2012; final manuscript received January 25, 2013; published online July 26, 2013. Assoc. Editor: Zhuomin Zhang.

J. Heat Transfer 135(9), 091103 (Jul 26, 2013) (7 pages) Paper No: HT-12-1408; doi: 10.1115/1.4024357 History: Received July 26, 2012; Revised January 25, 2013

Accurate thermal conductivity values are essential for the successful modeling, design, and thermal management of microelectromechanical systems (MEMS) and devices. However, the experimental technique best suited to measure the thermal conductivity of these systems, as well as the thermal conductivity itself, varies with the device materials, fabrication processes, geometry, and operating conditions. In this study, the thermal conductivities of boron doped single-crystal silicon microbridges fabricated using silicon-on-insulator (SOI) wafers are measured over the temperature range from 80 to 350 K. The microbridges are 4.6 mm long, 125 μm tall, and either 50 or 85 μm wide. Measurements on the 85 μm wide microbridges are made using both steady-state electrical resistance thermometry (SSERT) and optical time-domain thermoreflectance (TDTR). A thermal conductivity of 77 Wm−1 K−1 is measured for both microbridge widths at room temperature, where the results of both experimental techniques agree. However, increasing discrepancies between the thermal conductivities measured by each technique are found with decreasing temperatures below 300 K. The reduction in thermal conductivity measured by TDTR is primarily attributed to a ballistic thermal resistance contributed by phonons with mean free paths larger than the TDTR pump beam diameter. Boltzmann transport equation (BTE) modeling under the relaxation time approximation (RTA) is used to investigate the discrepancies and emphasizes the role of different interaction volumes in explaining the underprediction of TDTR measurements.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dwyer, V., Franklin, A., and Campbell, D., 1990, “Thermal Failure in Semiconductor Devices,” Solid-State Electron., 33(5), pp. 553–560. [CrossRef]
Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., and Phillpot, S. R., 2003, “Nanoscale Thermal Transport,” J. Appl. Phys., 93(2), pp. 793–818. [CrossRef]
Liu, W., and Asheghi, M., 2005, “Impact of Phonon-Boundary Scattering and Multilevel Copper-Dielectric Interconnect System on Self-Heating of SOI Transistors,” Twenty First Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 243–246.
Pop, E., 2010, “Energy Dissipation and Transport in Nanoscale Devices,” Nano Res., 3, pp. 147–169. [CrossRef]
Phinney, L. M., Lu, W.-Y., and Serrano, J. R., 2011, “Raman and Infrared Thermometry for Microsystems,” Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference (AJTEC2011)(44097).
Phinney, L. M., Baker, M. S., and Serrano, J. R., 2012, “Thermal Microactuators,” Microelectromechanical Systems and Devices, InTech, Rijeka, Croatia, pp. 415–434.
McConnell, A. D., and Goodson, K. E., 2005, “Thermal Conduction in Silicon Micro- and Nanostructures,” Annu. Rev. Heat Transfer, 14, pp. 129–168. [CrossRef]
Liu, W., and Asheghi, M., 2004, “Phonon-Boundary Scattering in Ultrathin Single-Crystal Silicon Layers,” J. Appl. Phys., 84(19), pp. 3819–3821. [CrossRef]
Cahill, D. G., Goodson, K., and Majumdar, A., 2002, “Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures,” ASME J. Heat Transfer, 124, pp. 223–241. [CrossRef]
Koh, Y. K., Singer, S. L., Kim, W., Zine, J. M. O., Lu, H., Cahill, D. G., Majumdar, A., and Gossard, A. C., 2009, “Comparison of the 3ω Method and Time-Domain Thermoreflectance for Measurements of the Cross-Plane Thermal Conductivity of Epitaxial Semiconductors,” J. Appl. Phys., 105, p. 054303. [CrossRef]
Asheghi, M., Leung, Y. K., Wong, S. S., and Goodson, K. E., 1997, “Phonon-Boundary Scattering in Thin Silicon Layers,” Appl. Phys. Lett., 71(13), pp. 1798–1800. [CrossRef]
Asheghi, M., Kurabayashi, K., Kasnavi, R., and Goodson, K. E., 2002, “Thermal Conduction in Doped Single-Crystal Silicon Films,” J. Appl. Phys., 91(8), pp. 5079–5088. [CrossRef]
Goodson, K. E., and Flik, M. I., 1994, “Solid Layer Thermal-Conductivity Measurement Techniques,” Appl. Mech. Rev., 47(3), pp. 101–112. [CrossRef]
Borca-Tasciuc, T., and Chen, G., 2004, “Experimental Techniques for Thin-Film Thermal Conductivity Characterization,” Thermal Conductivity, T. M.Tritt, J. T.Devreese, R. P.Evrary, S.Lundqvist, G. D.Mahan, and N. H.March, eds. (Physics of Solids and Liquids), Springer, New York, pp. 205–237.
Léonard, F., 2011, “Reduced Joule Heating in Nanowires,” Appl. Phys. Lett., 98(10), p. 103101. [CrossRef]
Tai, Y. C., Mastrangelo, C. H., and Muller, R. S., 1988, “Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films,” J. Appl. Phys., 63(5), pp. 1442–1447. [CrossRef]
Reifenberg, J., Voss, R. E., Rao, P., Schmitt, W., Yang, Y., Shojaei-Zadeh, S., Liu, W., Sadeghipour, S. M., and Asheghi, M., 2003, “Thermal Conductivity Measurements of Thin Aluminum Layers Using Steady State Joule Heating and Electrical Resistance Thermometry in Suspended Bridges,” Proceedings of ASME IMECE03(42055), pp. 377–380.
Yang, Y., and Asheghi, M., 2004, “A Novel Technique for In-Plane Thermal Conductivity Measurements of Electrically Conductive Interconnects and Nanostructures,” Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM’04, The Ninth Intersociety Conference on, Vol. 2, pp. 564–569.
Shojaei-Zadeh, S., Zhang, S., Liu, W., Yang, Y., Sadeghipour, S., Asheghi, M., and Sverdrup, P., 2004, “Thermal Characterization of Thin Film Cu Interconnects for the Next Generation of Microelectronic Devices,” Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM'04, The Ninth Intersociety Conference on, Vol. 2, pp. 575–583.
Phinney, L. M., Serrano, J. R., Piekos, E. S., Torczynski, J. R., Gallis, M. A., and Gorby, A. D., 2010, “Raman Thermometry Measurements and Thermal Simulations for MEMS Bridges at Pressures From 0.05 Torr to 625 Torr,” ASME J. Heat Transfer, 132(7), p. 072402. [CrossRef]
Cahill, D. G., 1990, “Thermal Conductivity Measurement From 30 to 750 K: the 3ω Method,” Rev. Sci. Instrum., 61(2), pp. 802–808. [CrossRef]
Dames, C., and Chen, G., 2005, “1ω, 2ω, and 3ω Methods for Measurments of Thermal Properties,” Rev. Sci. Instrum., 76, p. 124902. [CrossRef]
Paddock, C. A., and Eesley, G. L., 1986, “Transient Thermoreflectance From Thin Metal Films,” J. Appl. Phys., 60(1), pp. 285–290. [CrossRef]
Clemens, B. M., Eesley, G. L., and Paddock, C. A., 1988, “Time-Resolved Thermal Transport in Compositionally Modulated Metal Films,” Phys. Rev. B, 37(3), pp. 1085–1096. [CrossRef]
Koh, Y. K., and Cahill, D. G., 2007, “Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys,” Phys. Rev. B, 76, p. 075207. [CrossRef]
Hopkins, P. E., Serrano, J. R., Phinney, L. M., Kearney, S. P., Grasser, T. W., and Harris, C. T., 2010, “Criteria for Cross-Plane Dominated Thermal Transport in Multilayer Thin Film Systems During Modulated Laser Heating,” ASME J. Heat Transfer, 132(8), p. 081302. [CrossRef]
Cahill, D. G., and Watanabe, F., 2004, “Thermal Conductivity of Isotopically Pure and Ge-Doped Si Epitaxial Layers From 300 to 550K,” Phys. Rev. B, 70(23), p. 235322. [CrossRef]
Schmidt, A. J., Chen, X., and Chen, G., 2008, “Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance,” Rev. Sci. Instrum., 79, p. 114902. [CrossRef] [PubMed]
Capinski, W. S., Maris, H. J., Ruf, T., Cardona, M., Ploog, K., and Katzer, D. S., 1999, “Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique,” Phys. Rev. B, 59(12), pp. 8105–8113. [CrossRef]
Bloch, F., 1930, “Zum elektrischen Widerstandsgesetz bei tiefen Temperaturen,” Z. Phys. A: Hadrons Nucl., 59, pp. 208–214. [CrossRef]
Tas, G., and Maris, H. J., 1994, “Electron Diffusion in Metals Studied by Picosecond Ultrasonics,” Phys. Rev. B, 49, pp. 15046–15054. [CrossRef]
Thomsen, C., Strait, J., Vardeny, Z., Maris, H. J., Tauc, J., and Hauser, J. J., 1984, “Coherent Phonon Generation and Detection by Picosecond Light Pulses,” Phys. Rev. Lett., 53, pp. 989–992. [CrossRef]
Cahill, D. G., 2004, “Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance,” Rev. Sci. Instrum., 75(12), pp. 5119–5122. [CrossRef]
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, Thermophysical Properties of Matter—Specific Heat: Nonmetallic Solids, Vol. 5, IFI/Plenum, New York.
Touloukian, Y. S., and Buyco, E. H., 1970, Thermophysical Properties of Matter—Specific Heat: Metallic Elements and Alloys, Vol. 4, IFI/Plenum, New York.
Ho, C. Y., Powell, R. W., and Liley, P. E., 1972, “Thermal Conductivity of the Elements,” J. Phys. Chem. Ref. Data, 1(2), pp. 279–421. [CrossRef]
Serrano, J. R., Phinney, L. M., and Kearney, S. P., 2006, “Micro-Raman Thermometry of Thermal Flexure Actuators,” J. Micromechan. Microeng., 16(7), p. 1128. [CrossRef]
Beechem, T., Graham, S., Kearney, S. P., Phinney, L. M., and Serrano, J. R., 2007, “Simultaneous Mapping of Temperature and Stress in Microdevices Using Micro-Raman Spectroscopy,” Rev. Sci. Instrum., 78(6), p. 061301. [CrossRef] [PubMed]
Minnich, A. J., Johnson, J. A., Schmidt, A. J., Esfarjani, K., Dresselhaus, M. S., Nelson, K. A., and Chen, G., 2011, “Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths,” Phys. Rev. Lett., 107, p. 095901. [CrossRef] [PubMed]
Minnich, A. J., Chen, G., Mansoor, S., and Yilbas, B. S., 2011, “Quasiballistic Heat Transfer Studied Using the Frequency-Dependent Boltzmann Transport Equation,” Phys. Rev. B, 84, p. 235207. [CrossRef]
Callaway, J., 1959, “Model for Lattice Thermal Conductivity at Low Temperatures,” Phys. Rev., 113(4), pp. 1046–1051. [CrossRef]
Holland, M. G., 1963, “Analysis of Lattice Thermal Conductivity,” Phys. Rev., 132(6), pp. 2461–2471. [CrossRef]
Weber, W., 1977, “Adiabatic Bond Charge Model for the Phonons in Diamond, Si, Ge, and α-Sn,” Phys. Rev. B, 15(10), pp. 4789–4803. [CrossRef]
Ashcroft, N. W., and Mermin, N. D., 1976. Solid State Physics, Saunders College Publishers, Orlando, FL.
Liu, W., and Asheghi, M., 2005, “Thermal Conduction in Ultrathin Pure and Doped Single-Crystal Silicon Layers at High Temperatures,” J. Appl. Phys., 98(12), p. 123523. [CrossRef]
Fortier, D., Djerassi, H., Suzuki, K., and Albany, H. J., 1974, “Scattering of Thermal Phonons by Li-O Donors in Si,” Phys. Rev. B, 9, pp. 4340–4343. [CrossRef]
Verma, G. S., 1978, “Role of Oxygen Atoms in the Phonon Conductivity of Si Containing 5 × 1017 Oxygen Atoms per cm3,” Phys. Rev. B, 18, pp. 5903–5905. [CrossRef]
Klemens, P. G., 1955, “The Scattering of Low-Frequency Lattice Waves by Static Imperfections,” Proc. Phys. Soc., London, 68, p. 1113. [CrossRef]
Dai, P., Zhang, Y., and Sarachik, M. P., 1991, “Critical Conductivity Exponent for Si:B,” Phys. Rev. Lett., 66, pp. 1914–1917. [CrossRef] [PubMed]
Ziman, J. M., 1956, “The Effect of Free Electrons on Lattice Conduction,” Philos. Mag., 1(2), pp. 191–198. [CrossRef]
Kosarev, V. V., 1971, “Scattering of Phonons by Carriers in the Field of Charged Impurities,” Sov. Phys. JEPT, 33, p. 793.
Radhakrishnan, V., and Sharma, P. C., 1980, “Electron-Phonon Scattering in Li-Doped Silicon in the Intermediate Concentration Region,” J. Phys. C: Solid State Phys., 13(10), p. 2001. [CrossRef]
Ziman, J. M., 1960, Electrons and Phonons, 2nd ed., Oxford University Press, New York.
Johnson, J. A., Maznev, A. A., Cuffe, J., Eliason, J. K., Minnich, A. J., Kehoe, T., Torres, C. M. S., Chen, G., and Nelson, K. A., 2012, “Direct Measurement of Room Temperature Non-Diffusive Thermal Transport Over Micron Distances in a Silicon Membrane,” Phys. Rev. Lett., 110, p. 025901. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Image of a packaged die (microbridges span left to right) with no backside. A subset of microbridges are wired in a four-point probe configuration with two wirebonds connected to the bondpad at each end of the structure.

Grahic Jump Location
Fig. 2

Resistance measured as a function of current for an 85 μm wide microbridge at a nominal cryostat temperature of 253 K, and best fit model resistance predictions. The average temperature rise of the beam is shown for the maximum and minimum measurement currents. (Inset) Resistance of a test structure from 77 to 350 K.

Grahic Jump Location
Fig. 3

Average and maximum test structure temperature for the largest applied current at several nominal (cryostat) temperatures. The departure from the solid black line (no temperature rise) increases with nominal temperature due to the decrease in the test structure thermal conductivity.

Grahic Jump Location
Fig. 4

Schematic of the TDTR instrument at Sandia National Laboratories

Grahic Jump Location
Fig. 5

Thermal conductivity plots for the 50 μm and 85 μm microbridges

Grahic Jump Location
Fig. 6

Thermal conductivity calculated via the Boltzmann transport equation considering phonon–phonon, boundary, impurity, strain, and free hole-phonon scattering times with a dopant concentration n = 3.8 × 1019 cm−3. Contributions from longitudinal and transverse acoustic phonon modes are shown.

Grahic Jump Location
Fig. 7

Thermal conductivity calculated using the BTE and excluding phonons with MFPs larger than 24 μm, normalized to the SSERT measurements. Reduction in thermal conductivity reported in Ref. [39] for varying TDTR pump beam diameters on natural silicon are shown with select error bars from the original data.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In