Holland, J. H., 1992, *Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control and Artificial Intelligence*, MIT Press, Cambridge, MA.

Goldberg, D. E., 1989, *Genetic Algorithms in Search, Optimization, and Machine Learning*, Addison-Wesley, Reading, MA.

Queipo, N., Devarakonda, R., and Humphrey, J. A. C., 1994, “Genetic Algorithms for Thermosciences Research: Application to the Optimized Cooling of Electronic Components,” Int. J. Heat Mass Transfer, 37(6), pp. 893–908.

[CrossRef]Manivannan, S., Devi, S. P., and Arumugam, R., “Optimization of Flat Plate Heat Sink Using Genetic Algorithm,” Proceedings of 2011 1st International Conference on Electrical Energy Systems (ICEES), pp. 78–81.

Mohsin, S., Maqbool, A., and Khan, W. A., 2009, “Optimization of Cylindrical Pin-Fin Heat Sinks Using Genetic Algorithms,” IEEE Trans. Compon. Packag. Technol., 32(1), pp. 44–52.

[CrossRef]Ndao, S., Peles, Y., and Jensen, M. K., 2009, “Multi-Objective Thermal Design Optimization and Comparative Analysis of Electronics Cooling Technologies,” Int. J. Heat Mass Transfer, 52(19-20), pp. 4317–4326.

[CrossRef]Fabbri, G., 2000, “Heat Transfer Optimization in Corrugated Wall Channels,” Int. J. Heat Mass Transfer, 43(23), pp. 4299–4310.

[CrossRef]Jian-hui, Z., Chun-xin, Y., and Li-na, Z., 2009, “Minimizing the Entropy Generation Rate of the Plate-Finned Heat Sinks Using Computational Fluid Dynamics and Combined Optimization,” Appl. Therm. Eng., 29(8-9), pp. 1872–1879.

[CrossRef]Wildi-Tremblay, P., and Gosselin, L., 2007, “Layered Porous Media Architecture for Maximal Cooling,” Int. J. Heat Mass Transfer, 50(3–4), pp. 464–478.

[CrossRef]Tye-Gingras, M., and Gosselin, L., 2008, “Thermal Resistance Minimization of a Fin-and-Porous-Medium Heat Sink With Evolutionary Algorithms,” Numer. Heat Transfer, Part A, 54(4), pp. 349–366.

[CrossRef]Leblond, G., and Gosselin, L., 2008, “Effect of Non-Local Equilibrium on Minimal Thermal Resistance Porous Layered Systems,” Int. J. Heat Fluid Flow, 29(1), pp. 281–291.

[CrossRef]Kennedy, J., and Eberhart, R., 1995, “Particle Swarm Optimization,” Proceedings of IEEE International Conference on Neural Networks, Vol. 1944, pp. 1942–1948.

Eberhart,R., and Kennedy, J., 1995, “A New Optimizer Using Particle Swarm Theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS '95, pp. 39–43.

Eberhart, R., and Shi, Y., 1998, “Comparison Between Genetic Algorithms and Particle Swarm Optimization,” *Evolutionary Programming* VII, V.Porto, N.Saravanan, D.Waagen, and A.Eiben, eds., Springer, Berlin, pp. 611–616.

Eberhart, R. C., and Shi, Y., 2000, “Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization,” Proceedings of the 2000 Congress on Evolutionary Computation, Vol. 81, pp. 84–88.

Eberhart, and Yuhui, S., 2001, “Particle Swarm Optimization: Developments, Applications and Resources,” Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 81, pp. 81–86.

Shi, Y., and Eberhart, R. C., 1999, “Empirical study of particle swarm optimization,” Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, Vol. 1953, p. 1950.

Xiaohui, H., and Eberhart, R., 2002, “Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization,” Proceedings of the 2002 Congress on Evolutionary Computation, CEC '02, pp. 1677–1681.

Xiaohui, H., Eberhart, R. C., and Yuhui, S., 2003, “Particle Swarm With Extended Memory for Multiobjective Optimization,” Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS '03, pp. 193–197.

Bureerat, S., and Srisomporn, S., 2010, “Optimum Plate-Fin Heat Sinks by Using a Multi-Objective Evolutionary Algorithm,” Eng. Optim., 42(4), pp. 305–323.

[CrossRef]Kanyakam, S., and Bureerat, S., 2011, “Multiobjective Evolutionary Optimization of Splayed Pin-Fin Heat Sink,” Eng. Appl. Comput. Fluid Mech., 5(4), pp. 553–565.

Kanyakam, S., and Bureerat, S., 2012, “Multiobjective Optimization of a Pin-Fin Heat Sink Using Evolutionary Algorithms,” J. Electron. Packag., 134(2), pp. 021008–021008.

[CrossRef]Xiong, Q., Li, B., Chen, F., Ma, J., Ge, W., and Li, J., 2010, “Direct Numerical Simulation of Sub-Grid Structures in Gas–Solid Flow—GPU Implementation of Macro-Scale Pseudo-Particle Modeling,” Chem. Eng. Sci., 65(19), pp. 5356–5365.

[CrossRef]Xiong, Q., Li, B., Zhou, G., Fang, X., Xu, J., Wang, J., He, X., Wang, X., Wang, L., Ge, W., and Li, J., 2012, “Large-Scale DNS of Gas–Solid Flows on Mole-8.5,” Chem. Eng. Sci., 71(0), pp. 422–430.

[CrossRef]Xiong, Q., Deng, L., Wang, W., and Ge, W., 2011, “SPH method for Two-Fluid Modeling of Particle–Fluid Fluidization,” Chem. Eng. Sci., 66(9), pp. 1859–1865.

[CrossRef]Catton, I., 2011, “Conjugate Heat Transfer Within a Heterogeneous Hierarchical Structure,” J. Heat Transfer, 133(10), p. 103001.

[CrossRef]Anderson, T. B., and Jackson, R., 1967, “Fluid Mechanical Description of Fluidized Beds. Equations of Motion,” Ind. Eng. Chem. Fundam., 6(4), pp. 527–539.

[CrossRef]Slattery, J. C., 1967, “Flow of Viscoelastic Fluids Through Porous Media,” AIChE J., 13(6), pp. 1066–1071.

[CrossRef]Marle, C. M., 1967, “Ecoulements monophasiques en milieu poreux,” Rev. Inst. Francais du Petrole, 22, pp. 1471–1509.

Whitaker, S., 1967, “Diffusion and Dispersion in Porous Media,” AIChE J., 13(3), pp. 420–427.

[CrossRef]Zolotarev, P. P., and Radushkevich, L. V., 1968, “An Approximate Analytical Solution of the Internal Diffusion Problem of Dynamic Absorption in the Linear Region of an Isotherm,” Russ. Chem. Bull., 17(8), pp. 1818–1820.

[CrossRef]Slattery, J. C., 1980, *Momentum, Energy and Mass Transfer in Continua*, Krieger, Malabar, FL.

Kaviany, M., 1995, *Principles of Heat Transfer in Porous Media*, Springer, New York.

Gray, W. G., Leijnse, A., Kolar, R. L., and Blain, C. A., 1993, *Mathematical Tools for Changing Spatial Scales in the Analysis of Physical Systems*, CRC Press, Boca Raton, FL.

Whitaker, S., 1977, “Simultaneous Heat, Mass and Momentum Transfer in Porous Media: A Theory of Drying,” Adv. Heat Transfer, 13, pp. 119–203.

[CrossRef]Whitaker, S., 1997, “Volume Averaging of Transport Equations,” Int. Ser. Adv. Fluid Mech., 13, pp. 1–60.

Kheifets, L. I., and Neimark, A. V., 1982, *Multiphase Processes in Porous Media*, Khimia, Moscow.

Dullien, F. A. L., 1979, *Porous Media Fluid Transport and Pore Structure*, Academic Press, New York.

Adler, P. M., 1992, *Porous Media: Geometry and Transports*, Butterworth-Heinemann, Waltham, MA.

Travkin, V., and Catton, I., 1992, *Fundamentals of Heat Transfer in Porous Media*, HTD Vol. 193, ASME, New York.

Travkin, V., and Catton, I., 1995, “A Two-Temperature Model for Turbulent Flow and heat Transfer in a Porous Layer,” J. Fluids Eng., 117(1), pp. 181–188.

[CrossRef]Travkin, V. S., and Catton, I., 1998, “Porous Media Transport Descriptions—Non-Local, Linear and Non-Linear Against Effective Thermal/Fluid Properties,” Adv. Colloid Interface Sci., 76-77(0), pp. 389–443.

[CrossRef]Travkin, V. S., Catton, I., and Gratton, L., 1993, *Heat Transfer in Porous Media*, HTD Vol. 240, ASME, New York.

Travkin, V. S., Catton, I., Hu, K., Ponomarenko, A. T., and Shevchenko, V. G., 1999, *Application of Porous Media Methods for Engineered Materials*, AMD Vol. 233, ASME, New York.

Nakayama, A., Ando, K., Yang, C., Sano, Y., Kuwahara, F., and Liu, J., 2009, “A Study on Interstitial Heat Transfer in Consolidated and Unconsolidated Porous Media,” Heat Mass Transfer, 45(11), pp. 1365–1372.

[CrossRef]Nakayama, A., and Kuwahara, F., 2008, “A General Macroscopic Turbulence Model for Flows in Packed Beds, Channels, Pipes, and Rod Bundles,” J. Fluids Eng., 130(10), p. 101205.

[CrossRef]Nakayama, A., Kuwahara, F., and Hayashi, T., 2004, “Numerical Modelling for Three-Dimensional Heat and Fluid Flow Through a Bank of Cylinders in Yaw,” J. Fluid Mech., 498, pp. 139–159.

[CrossRef]Nakayama, A., Kuwahara, F., and Kodama, Y., 2006, “An Equation for Thermal Dispersion Flux Transport and Its Mathematical Modelling for Heat and Fluid Flow in a Porous Medium,” J. Fluid Mech., 563(1), pp. 81–96.

[CrossRef]Travkin, V. S., and Catton, I., 2001, “Transport Phenomena in Heterogeneous Media Based on Volume Averaging Theory,” *Advances in Heat Transfer*, G. G.Hari, and A. H.Charles, eds., Elsevier, New York, pp. 1–144.

Geb, D., Zhou, F., DeMoulin, G., and Catton, I., 2013, “Genetic Algorithm Optimization of a Finned-Tube Heat Exchanger Modeled With Volume-Averaging Theory,” ASME J. Heat Transfer, 135(8), pp. 082602–082602.

[CrossRef]Zhou, F., DeMoulin, G. W., Geb, D. J., and Catton, I., 2012, “Closure for a Plane Fin Heat Sink With Scale-Roughened Surfaces for Volume Averaging Theory (VAT) Based Modeling,” Int. J. Heat Mass Transfer, 55(25–26), pp. 7677–7685.

[CrossRef]Zhou, F., and Catton, I., 2013, “Obtaining Closure for a Plane Fin Heat Sink With Elliptic Scale-Roughened Surfaces for Volume Averaging Theory (VAT) Based Modeling,” Int. J. Therm. Sci., 71, pp. 264–273.

[CrossRef]Zhou, F., and Catton, I., 2013, “A Numerical Investigation of Turbulent Flow and Heat Transfer in Rectangular Channels With Elliptic Scale-Roughened Walls,” ASME J. Heat Transfer, 135(8), p. 081901.

[CrossRef]Zhou, F., Hansen, N. E., Geb, D. J., and Catton, I., 2011, “Determination of the Number of Tube Rows to Obtain Closure for Volume Averaging Theory Based Model of Fin-and-Tube Heat Exchangers,” ASME J. Heat Transfer, 133(12), p. 121801.

[CrossRef]Zhou, F., and Catton, I., 2012, “Volume Averaging Theory (VAT) Based Modeling and Closure Evaluation for Fin-and-Tube Heat Exchangers,” Heat Mass Transfer, 48, pp. 1813–1823.

[CrossRef]Geb, D., Zhou, F., and Catton, I., 2012, “Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating,” ASME J. Heat Transfer, 134(4), p. 042604.

[CrossRef]Geb, D., Ge, M., Chu, J., and Catton, I., 2013, “Measuring Transport Coefficients in Heterogeneous and Hierarchical Heat Transfer Devices,” ASME J. Heat Transfer, 135(6), p. 061101.

[CrossRef]Geb, D., Lerro, A., Sbutega, K., and Catton, I., 2013, “Internal Transport Coefficient Measurements in Random Fiber Matrix Heat Exchangers,” J. Therm. Sci. Eng. Appl. (in press).

Geb, D., 2013, “Hierarchical Modeling for Population-Based Heat Exchanger Design,“ Ph.D. thesis, UCLA, Los Angeles.

Zhou, F., Hansen, N. E., Geb, D. J., and Catton, I., 2011, “Obtaining Closure for Fin-and-Tube Heat Exchanger Modeling Based on Volume Averaging Theory (VAT),” ASME J. Heat Transfer, 133(11), p. 111802.

[CrossRef]Shi, Y., and Eberhart, R., 1998, “A Modified Particle Swarm Optimizer,” Proceedings of the 1998 IEEE International Conference on IEEE World Congress on Computational Intelligence Evolutionary Computation, pp. 69–73.

Xiaohui, H., Yuhui, S., and Eberhart, R., 2004, “Recent Advances in Particle Swarm,” Proceedings of Congress on Evolutionary Computation, CEC2004, Vol. 91, pp. 90–97.

Chang, S. W., Liou, T.-M., and Lu, M. H., 2005, “Heat Transfer of Rectangular Narrow Channel With Two Opposite Scale-Roughened Walls,” Int. J. Heat Mass Transfer, 48(19-20), pp. 3921–3931.

[CrossRef]Lyons, A., Krishnan, S., Mullins, J., Hodes, M., and Hernon, D., 2009, “Advanced Heat Sinks Enabled by Three-Dimensional Printing,” Twentieth Annual International Solid Freeform Fabrication Symposium.

Kays, W. M., and London, A. L., 1984, *Compact Heat Exchangers*, McGraw-Hill, New York.