Research Papers: Micro/Nanoscale Heat Transfer

Heat Dissipation Mechanism at Carbon Nanotube Junctions on Silicon Oxide Substrate

[+] Author and Article Information
Liang Chen

G.W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: lchen64@gatech.edu

Satish Kumar

G.W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: satish.kumar@me.gatech.edu

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received November 30, 2012; final manuscript received September 2, 2013; published online March 6, 2014. Assoc. Editor: Patrick E. Phelan.

J. Heat Transfer 136(5), 052401 (Mar 06, 2014) (7 pages) Paper No: HT-12-1637; doi: 10.1115/1.4025436 History: Received November 30, 2012; Revised September 02, 2013

This study investigates heat dissipation at carbon nanotube (CNT) junctions supported on silicon dioxide substrate using molecular dynamics simulations. The temperature rise in a CNT (∼top CNT) not making direct contact with the oxide substrate but only supported by other CNTs (∼bottom CNT) is observed to be hundreds of degree higher compared with the CNTs well-contacted with the substrate at similar power densities. The analysis of spectral temperature decay of CNT-oxide system shows very fast intratube energy transfer in a CNT from high-frequency band to intermediate-frequency bands. The low frequency phonon band (0–5 THz) of top CNT shows two-stage energy relaxation which results from the efficient coupling of low frequency phonons in the CNT-oxide system and the blocking of direct transport of high- and intermediate-frequency phonons of top CNT to the oxide substrate by bottom CNT.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., 2002, “Carbon Nanotubes—The Route Toward Applications,” Science, 297(5582), pp. 787–792. [CrossRef] [PubMed]
Reuss, R. H., Chalamala, B. R., Moussessian, A., Kane, M. G., Kumar, A., Zhang, D. C., Rogers, J. A., Hatalis, M., Temple, D., Moddel, G., Eliasson, B. J., Estes, M. J., Kunze, J., Handy, E. S., Harmon, E. S., Salzman, D. B., Woodall, J. M., Alam, M. A., Murthy, J. Y., Jacobsen, S. C., Olivier, M., Markus, D., Campbell, P. M., and Snow, E., 2005, “Macroelectronics: Perspectives on Technology and Applications,” Proc. IEEE, 93(7), pp. 1239–1256. [CrossRef]
Cao, Q., and Rogers, J. A., 2009, “Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects,” Adv. Mater., 21(1), pp. 29–53. [CrossRef]
Novak, J. P., Snow, E. S., Houser, E. J., Park, D., Stepnowski, J. L., and McGill, R. A., 2003, “Nerve Agent Detection Using Networks of Single-Walled Carbon Nanotubes,” Appl. Phys. Lett., 83(19), pp. 4026–4028. [CrossRef]
Snow, E. S., Novak, J. P., Lay, M. D., Houser, E. H., Perkins, F. K., and Campbell, P. M., 2004, “Carbon Nanotube Networks: Nanomaterial for Macroelectronic Applications,” J. Vac. Sci. Technol. B, 22(4), pp. 1990–1994. [CrossRef]
Kim, S., Kim, S., Park, J., Ju, S., and Mohammadi, S., 2010, “Fully Transparent Pixel Circuits Driven by Random Network Carbon Nanotube Transistor Circuitry,” ACS Nano, 4(6), pp. 2994–2998. [CrossRef] [PubMed]
Kim, S., Ju, S., Back, J. H., Xuan, Y., Ye, P. D., Shim, M., Janes, D. B., and Mohammadi, S., 2009, “Fully Transparent Thin-Film Transistors Based on Aligned Carbon Nanotube Arrays and Indium Tin Oxide Electrodes,” Adv. Mater., 21(5), pp. 564–568. [CrossRef] [PubMed]
Valletta, A., Moroni, A., Mariucci, L., Bonfiglietti, A., and Fortunato, G., 2006, “Self-Heating Effects in Polycrystalline Silicon Thin Film Transistors,” Appl. Phys. Lett., 89(9), p. 093509. [CrossRef]
Kumar, S., Pimparkar, N., Murthy, J. Y., and Alam, M. A., 2011, “Self-Consistent Electrothermal Analysis of Nanotube Network Transistors,” J. Appl. Phys., 109(1), p. 014315. [CrossRef]
Pop, E., Mann, D., Wang, Q., Goodson, K., and Dai, H. J., 2006, “Thermal Conductance of an Individual Single-Wall Carbon Nanotube Above Room Temperature,” Nano Lett., 6(1), pp. 96–100. [CrossRef] [PubMed]
Kim, P., Shi, L., Majumdar, A., and McEuen, P. L., 2001, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett., 87(21), p. 215502. [CrossRef] [PubMed]
Maune, H., Chiu, H. Y., and Bockrath, M., 2006, “Thermal Resistance of the Nanoscale Constrictions Between Carbon Nanotubes and Solid Substrates,” Appl. Phys. Lett., 89(1), p. 013109. [CrossRef]
Tsai, C. L., Liao, A., Pop, E., and Shim, M., 2011, “Electrical Power Dissipation in Semiconducting Carbon Nanotubes on Single Crystal Quartz and Amorphous SiO2,” Appl. Phys. Lett., 99(5), p. 053120. [CrossRef]
Ong, Z. Y., and Pop, E., 2010, “Frequency and Polarization Dependence of Thermal Coupling Between Carbon Nanotubes and SiO2,” J. Appl. Phys., 108(10), p. 103502. [CrossRef]
Pop, E., Mann, D. A., Goodson, K. E., and Dai, H. J., 2007, “Electrical and Thermal Transport in Metallic Single-Wall Carbon Nanotubes on Insulating Substrates,” J. Appl. Phys., 101(9), p. 093710. [CrossRef]
Liao, A., Alizadegan, R., Ong, Z. Y., Dutta, S., Xiong, F., Hsia, K. J., and Pop, E., 2010, “Thermal Dissipation and Variability in Electrical Breakdown of Carbon Nanotube Devices,” Phys. Rev. B, 82(20), p. 205406. [CrossRef]
Ong, Z. Y., and Pop, E., 2010, “Molecular Dynamics Simulation of Thermal Boundary Conductance Between Carbon Nanotubes and SiO2,” Phys. Rev. B, 81(15), p. 155408. [CrossRef]
Ong, Z. Y., Pop, E., and Shiomi, J., 2011, “Reduction of Phonon Lifetimes and Thermal Conductivity of a Carbon Nanotube on Amorphous Silica,” Phys. Rev. B, 84(16), p. 165418. [CrossRef]
Grujicic, M., Cao, G., and Gersten, B., 2004, “Atomic-Scale Computations of the Lattice Contribution to Thermal Conductivity of Single-Walled Carbon Nanotubes,” Mater. Sci. Eng., B, 107(2), pp. 204–216. [CrossRef]
Xu, Z. P., and Buehler, M. J., 2009, “Nanoengineering Heat Transfer Performance at Carbon Nanotube Interfaces,” Acs Nano, 3(9), pp. 2767–2775. [CrossRef] [PubMed]
Yang, J. K., Waltermire, S., Chen, Y. F., Zinn, A. A., Xu, T. T., and Li, D. Y., 2010, “Contact Thermal Resistance Between Individual Multiwall Carbon Nanotubes,” Appl. Phys. Lett., 96(2), p. 023109. [CrossRef]
Chalopin, Y., Volz, S., and Mingo, N., 2009, “Upper Bound to the Thermal Conductivity of Carbon Nanotube Pellets,” J. Appl. Phys., 105(8), p. 084301. [CrossRef]
Zhong, H. L., and Lukes, J. R., 2006, “Interfacial Thermal Resistance Between Carbon Nanotubes: Molecular Dynamics Simulations and Analytical Thermal Modeling,” Phys. Rev. B, 74(12), p. 125403. [CrossRef]
Prasher, R. S., Hu, X. J., Chalopin, Y., Mingo, N., Lofgreen, K., Volz, S., Cleri, F., and Keblinski, P., 2009, “Turning Carbon Nanotubes From Exceptional Heat Conductors Into Insulators,” Phys. Rev. Lett., 102(10), p. 105901. [CrossRef] [PubMed]
Estrada, D., and Pop, E., 2011, “Imaging Dissipation and Hot Spots in Carbon Nanotube Network Transistors,” Appl. Phys. Lett., 98(7), p. 073102. [CrossRef]
Chen, L., and Kumar, S., 2011, “Thermal Transport in Double-Wall Carbon Nanotubes Using Heat Pulse,” J. Appl. Phys., 110(7), p. 074305. [CrossRef]
Kumar, S., and Murthy, J. Y., 2009, “Interfacial Thermal Transport Between Nanotubes,” J. Appl. Phys., 106(8), p. 084302. [CrossRef]
Osman, M. A., and Srivastava, D., 2005, “Molecular Dynamics Simulation of Heat Pulse Propagation in Single-Wall Carbon Nanotubes,” Phys. Rev. B, 72(12), p. 125413. [CrossRef]
Shiomi, J., and Maruyama, S., 2006, “Non-Fourier Heat Conduction in a Single-Walled Carbon Nanotube: Classical Molecular Dynamics Simulations,” Phys. Rev. B, 73(20), p. 205420. [CrossRef]
Diao, J., Srivastava, D., and Menon, M., 2008, “Molecular Dynamics Simulations of Carbon Nanotube/Silicon Interfacial Thermal Conductance,” J. Chem. Phys., 128(16), p. 164708. [CrossRef] [PubMed]
Thomas, J. A., Iutzi, R. M., and McGaughey, A. J. H., 2010, “Thermal Conductivity and Phonon Transport in Empty and Water-Filled Carbon Nanotubes,” Phys. Rev. B, 81(4), p. 045413. [CrossRef]
Carlborg, C. F., Shiomi, J., and Maruyama, S., 2008, “Thermal Boundary Resistance Between Single-Walled Carbon Nanotubes and Surrounding Matrices,” Phys. Rev. B, 78(20), p. 205406. [CrossRef]
Gupta, M. P., Chen, L., Estrada, D., Behnam, A., Pop, E., and Kumar, S., 2012, “Impact of Thermal Boundary Conductances on Power Dissipation and Electrical Breakdown of Carbon Nanotube Network Transistors,” J. Appl. Phys., 112(12), p. 124506. [CrossRef]
Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R., and Phillpot, S. R., 2003, “Nanoscale Thermal Transport,” J. Appl. Phys., 93(2), pp. 793–818. [CrossRef]
Maruyama, S., 2002, “A Molecular Dynamics Simulation of Heat Conduction in Finite Length SWNTs,” Physica B, 323(1–4), pp. 193–195. [CrossRef]
Plimpton, S., 1995, “Fast Parallel Algorithms for Short-Range Molecular-Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Stuart, S. J., Tutein, A. B., and Harrison, J. A., 2000, “A Reactive Potential for Hydrocarbons With Intermolecular Interactions,” J. Chem. Phys., 112(14), pp. 6472–6486. [CrossRef]
Munetoh, S., Motooka, T., Moriguchi, K., and Shintani, A., 2007, “Interatomic Potential for Si-O Systems Using Tersoff Parameterization,” Comput. Mater. Sci., 39(2), pp. 334–339. [CrossRef]
Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., and Skiff, W. M., 1992, “UFF, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations,” J. Am. Chem. Soc., 114(25), pp. 10024–10035. [CrossRef]
Varshney, V., Patnaik, S. S., Roy, A. K., and Farmer, B. L., 2010, “Modeling of Thermal Conductance at Transverse CNT-CNT Interfaces,” J. Phys. Chem. C, 114(39), pp. 16223–16228. [CrossRef]


Grahic Jump Location
Fig. 1

Configurations of (a) system I, (b) system II, and (c) system III. These systems are equilibrated at 375 K.

Grahic Jump Location
Fig. 2

Minimum distance between top CNT and SiO2 substrate in system II (see Fig. 1(b)). Here, x = 0 corresponds to the midpoint of the bottom CNT.

Grahic Jump Location
Fig. 3

Temperature distribution along the top CNT in system III at heating power of 26.5 nW

Grahic Jump Location
Fig. 4

Temperature variations of top CNT in the three systems shown in Fig. 1 as a function of heating power

Grahic Jump Location
Fig. 5

(a) Equivalent thermal resistor circuit of systems I, II, and III. (b) Rate of heat transfer via CNT-SiO2 direct contact and CNT-CNT junction in system II. L and LB are the lengths of top and bottom CNTs, respectively. Lcontact is the length of top CNT directly contacted with SiO2 in system II.

Grahic Jump Location
Fig. 6

(a) Phonon dispersion relations of top CNT in system III at T = 375 K. k* is wave vector normalized with respect to 2π/az. (b) Normalized phonon spectral energy of system III at different frequencies at T = 375 K. The spectral energy of C (in top and bottom CNTs), Si, and O is normalized to the maximum value of spectral energy of C atoms in top CNT. The frequency ranges of four phonon bands (1–4) are shown.

Grahic Jump Location
Fig. 7

Top CNT total temperature, substrate temperature, and spectral temperature (Tsp) of four frequency bands (see Fig. 6(b)) of top CNT in (a) system I and (c) system III. The transient decay of difference between top CNT total temperature (or spectral temperature of phonon bands) and substrate temperature (ΔT) for (b) system I and (d) system III. The unit of time constant is picosecond.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In