Lebon, G., Jou, D., and Casas-Vázquez, J., 2008, *Understanding Non-Equilibrium Thermodynamics: Foundations, Applications, Frontiers*, Springer, New York.

Bejan, A., 1996, “Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes,” J. Appl. Phys., 79(3), pp. 1191–1218.

[CrossRef]Chen, L., Wu, C., and Sun, F., 1999, “Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems,” J. Non-Equilib. Thermodyn., 24(4), pp. 327–359.

Bejan, A., 2002, “Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture,” Int. J. Energy Res., 26(7), pp. 545–565.

Sciubba, E., and Wall, G., 2007, “A Brief Commented History of Exergy From the Beginnings to 2004,” Int. J. Thermodyn., 10(1), pp. 1–26.

Hepbasli, A., 2008, “A Key Review on Exergetic Analysis and Assessment of Renewable Energy Resources for a Sustainable Future,” Renewable Sustainable Energy Rev., 12(3), pp. 593–661.

[CrossRef]Bejan, A., Tsatsaronis, G., and Moran, M., 1996, *Thermal Design and Optimization*, John Wiley & Sons, Inc., New York.

Dincer, I., and Rosen, M. A., 2007, *Exergy: Energy, Environment, and Sustainable Development*, Elsevier, Oxford, UK.

Moran, M. J., and Sciubba, E., 1994, “Exergy Analysis: Principles and Practice,” ASME J. Eng. Gas Turbines Power, 116(2), pp. 285–290.

[CrossRef]Hepbasli, A., and Akdemir, O., 2004, “Energy and Exergy Analysis of a Ground Source (Geothermal) Heat Pump System,” Energy Convers. Manage., 45(5), pp. 737–753.

Dincer, I., 2002, “On Thermal Energy Storage Systems and Applications in Buildings,” Energy Build., 34(4), pp. 377–388.

[CrossRef]Dincer, I., and Sahin, A. Z., 2004, “A New Model for Thermodynamic Analysis of a Drying Process,” Int. J. Heat Mass Transfer, 47(4), pp. 645–652.

[CrossRef]Rosen, M. A., and Dincer, I., 2003, “Exergoeconomic Analysis of Power Plants Operating on Various Fuels,” Appl. Therm. Eng., 23(6), pp. 643–658.

[CrossRef]Shah, A. J., and Patel, C. D., 2009, “Designing Environmentally Sustainable Electronic Cooling Systems Using Exergo-Thermo-Volumes,” Int. J. Energy Res., 33(14), pp. 1266–1277.

[CrossRef]Shah, A. J., Carey, V. P., Bash, C. E., and Patel, C. D., 2006, “An Exergy-Based Figure-of-Merit for Electronic Packages,” ASME J. Electron. Packag., 128(4), pp. 360–369.

[CrossRef]Shah, A. J., Carey, V. P., Bash, C. E., and Patel, C. D., 2008, “Exergy Analysis of Data Center Thermal Management Systems,” ASME J. Heat Transfer, 130(2), pp. 1–10.

[CrossRef]Hoffmann, K. H., Andresen, B., and Salamon, P., 1989, “Measures of Dissipation,” Phys. Rev. A, 39(7), pp. 3618–3621.

[CrossRef] [PubMed]Bejan, A., 1996, *Entropy Generation Minimization the Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes*, CRC Press, Boca Raton, FL.

Badescu, V., 2004, “Optimal Paths for Minimizing Lost Available Work During Usual Finite-Time Heat Transfer Processes,” Non-Equilib. Thermodyn., 29(1), pp. 53–73.

Aceves-Saborio, S., Ranasinghe, J., and Reistad, G., 1989, “An Extension to the Irreversibility Minimization Analysis Applied to Heat Exchangers,” ASME J. Heat Transfer, 111, pp. 29–36.

[CrossRef]Kock, F., and Herwig, H., 2004, “Local Entropy Production in Turbulent Shear Flows: A High-Reynolds Number Model With Wall Functions,” Int. J. Heat Mass Transfer, 47(1011), pp. 2205–2215.

[CrossRef]Ratts, E. B., and Raut, A. G., 2004, “Entropy Generation Minimization of Fully Developed Internal Flow With Constant Heat Flux,” J. Heat Transfer, 126(4), pp. 656–659.

[CrossRef]Ko, T., 2006, “Analysis of Optimal Reynolds Number for Developing Laminar Forced Convection in Double Sine Ducts Based on Entropy Generation Minimization Principle,” Energy Convers. Manage., 47(6), pp. 655–670.

[CrossRef]Abbassi, H., 2007, “Entropy Generation Analysis in a Uniformly Heated Microchannel Heat Sink,” Energy, 32(10), pp. 1932–1947.

[CrossRef]Sahiti, N., Krasniqi, F., Fejzullahu, X., Bunjaku, J., and Muriqi, A., 2008, “Entropy Generation Minimization of a Double-Pipe Pin Fin Heat Exchanger,” Appl. Therm. Eng., 28(17–18), pp. 2337–2344.

[CrossRef]Naterer, G. F., and Camberos, J. A., 2008, *Entropy Based Design and Analysis of Fluids Engineering Systems*, CRC Press, Boca Raton, FL.

Jian-Hui, Z., Chun-Xin, Y., and Li-Na, Z., 2009, “Minimizing the Entropy Generation Rate of the Plate-Finned Heat Sinks Using Computational Fluid Dynamics and Combined Optimization,” Appl. Therm. Eng., 29(8–9), pp. 1872–1879.

[CrossRef]Khan, W., Culham, J., and Yovanovich, M., 2009, “Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method,” IEEE Trans. Compon. Packag. Technol, 32(2), pp. 243–251.

[CrossRef]Chowdhury, K., and Sarangi, S. K., 1983, “A Second Law Analysis of the Concentric Tube Heat Exchanger: Optimisation of Wall Conductivity,” Int. J. Heat Mass Transfer, 26(5), pp. 783–786.

[CrossRef]Lin, W. W., and Lee, D. J., 1997, “Second-Law Analysis on a Pin-Fin Array Under Crossflow,” Int. J. Heat Mass Transfer, 40(8), pp. 1937–1945.

[CrossRef]Hesselgreaves, J. E., 2000, “Rationalisation of Second Law Analysis of Heat Exchangers,” Int. J. Heat Mass Transfer, 43(22), pp. 4189–4204.

[CrossRef]Yilmaz, M., Sara, O. N., and Karsli, S., 2001, “Performance Evaluation Criteria for Heat Exchangers Based on Second Law Analysis,” Int. J. Exergy, 1(4), pp. 278–294.

[CrossRef]Bar-Cohen, A., and Iyengar, M., 2003, “Least-Energy Optimization of Air-Cooled Heat Sinks for Sustainable Development,” IEEE Trans. Compon. Packag. Technol., 26(1), pp. 16–25.

[CrossRef]Paisam, N., 2006, “Second Law Analysis on the Heat Transfer of the Horizontal Concentric Tube Heat Exchanger,” Int. Commun. Heat Mass Transfer, 33(8), pp. 1029–1041.

[CrossRef]Culham, J. R., Khan, W. A., Yovanovich, M. M., and Muzychka, Y. S., 2007, “The Influence of Material Properties and Spreading Resistance in the Thermal Design of Plate Fin Heat Sinks,” ASME J. Electron. Packag., 129(1), pp. 76–81.

[CrossRef]Moran, J. M., and Shapiro, H. N., 2006, *Fundamentals of Engineering Thermodynamics*, 5th ed., John Wiley & Sons, Inc., Chichester, UK.

Lin, W., and Lee, D., 2000, “Second-Law Analysis on a Flat Plate-Fin Array Under Crossflow,” Int. Commun. Heat Mass Transfer, 27(2), pp. 179–190.

[CrossRef]Culham, J., and Muzychka, Y., 2001, “Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization,” IEEE Trans. Compon. Packag. Technol., 24(2), pp. 159–165.

[CrossRef]Ogiso, K., 2001, “Assessment of Overall Cooling Performance in Thermal Design of Electronics Based on Thermodynamics,” ASME J. Heat Transfer, 123, pp. 999–1005.

[CrossRef]Shih, C., and Liu, G., 2004, “Optimal Design Methodology of Plate-Fin Heat Sinks for Electronic Cooling Using Entropy Generation Strategy,” IEEE Trans. Compon. Packag. Technol., 27(3), pp. 551–559.

[CrossRef]Shuja, S. Z., Zubair, S. M., and Shazli, S. Z., 2007, “Optimization of a Finned Heat Sink Array Based on Thermoeconomic Analysis,” Int. J. Energy Res., 31(5), pp. 455–471.

[CrossRef]Chen, C.-T., Wu, C.-K., and Hwang, C., 2008, “Optimal Design and Control of CPU Heat Sink Processes,” IEEE Trans. Compon. Packag. Technol., 31(1), pp. 184–195.

[CrossRef]Gielen, R., Rogiers, F., Joshi, Y., and Baelmans, M., 2011, “On the Use of Second Law Based Cost Functions in Plate Fin Heat Sink Design,” 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), pp. 81–88.

Mironova, V. A., Tsirlin, A. M., Kazakov, V. A., and Berry, R. S., 1994, “Finite-Time Thermodynamics: Exergy and Optimization of Time-Constrained Processes,” J. Appl. Phys., 76(2), pp. 629–636.

[CrossRef]Bejan, A., 1995, “Theory of Heat Transfer-Irreversible Power Plants–II. The Optimal Allocation of Heat Exchange Equipment,” Int. J. Heat Mass Transfer, 38(3), pp. 433–444.

[CrossRef]Andresen, B., 1999, *Thermodynamic Optimization of Complex Energy Systems*, 1st ed., Springer, New York.

Durmayaz, A., Sogut, O. S., Sahin, B., and Yavuz, H., 2004, “Optimization of Thermal Systems Based on Finite-Time Thermodynamics and Thermoeconomics,” Prog. Energy Combust. Sci., 30(2), pp. 175–217.

[CrossRef]Kays, W. M., and London, A. L., 1964, *Compact Heat Exchangers*, 2nd ed., McGraw-Hill, New York.

Ndao, S., Peles, Y., and Jensen, M. K., 2009, “Multi-Objective Thermal Design Optimization and Comparative Analysis of Electronics Cooling Technologies,” Int. J. Heat Mass Transfer, 52, pp. 4317–4326.

[CrossRef]Shah, R. K., and London, A. L., 1978, *Laminar Flow Forced Convection in Ducts*, Academic, New York.

Lienhard, IV, J., and Lienhard, V, J., 2008, *A Heat Transfer Handbook*, 3rd ed., Phlogiston Press, Cambridge, MA.

Dong, J., Chen, J., Chen, Z., Zhang, W., and Zhou, Y., 2007, “Heat Transfer and Pressure Drop Correlations for the Multi-Louvered Fin Compact Heat Exchangers,” Energy Convers. Manage., 48(5), pp. 1506–1515.

[CrossRef]Kim, M.-H., and Bullard, C. W., 2002, “Air-Side Thermal Hydraulic Performance of Multi-Louvered Fin Aluminum Heat Exchangers,” Int. J. Refrigeration, 25(3), pp. 390–400.

[CrossRef]Incropera, F. D., and De Witt, D. P., 1990, *Fundamentals of Heat and Mass Transfer*, 3rd ed., John Wiley & Sons, New York.

Bejan, A., and Kraus, A. D., 2003, *Heat Transfer Handbook*, John Wiley & Sons, New York.

Rump, S. M., 1999, “INTLAB—INTerval LABoratory,” *Developments in Reliable Computing*, T.Csendes, ed., Kluwer Academic Publishers, Dordrecht, pp. 77–104.