Fourier, J., 1878, *The Analytical Theory of Heat*, Cambridge University Press, Cambridge, UK.

Boltzmann, L., 1902, *Leçons sur la théorie des gaz*, Gauthier-Villars, Paris.

Hill, T. L., 1994, *Thermodynamics of Small Systems*, Dover, New York.

Tzou, D. Y., 1997, *Macro to Micro-Scale Heat Transfer. The Lagging Behaviour*, Taylor and Francis, New York.

Müller, I., and Ruggeri, T., 1998, *Rational Extended Thermodynamics*, Springer-Verlag, Berlin.

Chen, G., 2005, *Nanoscale Energy Transport and Conversion—A Parallel Treatment of Electrons, Molecules, Phonons, and Photons*, Oxford University Press, Oxford.

Lebon, G., Jou, D., and Casas-Vázquez, J., 2008, *Understanding Nonequilibrium Thermodynamics*, Springer, Berlin.

Ferry, D. K., and Goodnick, S. M., 2009, *Transport in Nanostructures*, 2nd ed., Cambridge University Press, Cambridge, UK.

Jou, D., Casas-Vázquez, J., and Lebon, G., 2010, *Extended Irreversible Thermodynamics*, 4th rev. ed., Springer, Berlin.

Cattaneo, C., 1948, “Sulla conduzione del calore,” Atti Semin. Mat. Fis. Univ. Modena, 3, pp. 83–101.

Morse, P. M., and Feshbach, H., 1953, *Methods of Theoretical Physics*, McGraw-Hill, New York.

Vernotte, P., 1958, “Les paradoxes de la théorie continue de léquation de la chaleur,” Comput. Rend., 246, pp. 3154–3155.

Guyer, R. A., and Krumhansl, J. A., 1966, “Solution of the Linearized Phonon Boltzmann Equation,” Phys. Rev., 148, pp. 766–778.

[CrossRef]Guyer, R. A., and Krumhansl, J. A., 1966, “Thermal Conductivity, Second Sound and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals,” Phys. Rev., 148, pp. 778–788.

[CrossRef]Chen, G., 2001, “Ballistic-Diffusive Heat-Conduction Equations,” Phys. Rev. Lett., 86, pp. 2297–2300.

[CrossRef]Cimmelli, V. A., Sellitto, A., and Jou, D., 2009, “Nonlocal Effects and Second Sound in a Nonequilibrium Steady State,” Phys. Rev. B, 79, p. 014303.

[CrossRef]Cimmelli, V. A., Sellitto, A., and Jou, D., 2010, “Nonequilibrium Temperatures, Heat Waves, and Nonlinear Heat Transport Equations,” Phys. Rev. B, 81, 054301.

[CrossRef]Cimmelli, V. A., Sellitto, A., and Jou, D., 2010, “Nonlinear Evolution and Stability of the Heat Flow in Nanosystems: Beyond Linear Phonon Hydrodynamics,” Phys. Rev. B, 82, p. 184302.

[CrossRef]Tzou, D. Y., 2011, “Nonlocal Behavior in Phonon Transport,” Int. J. Heat Mass Transfer, 54, pp. 475–481.

[CrossRef]Cao, B.-Y., and Guo, Z.-Y., 2007, “Equation of Motion of a Phonon Gas and Non-Fourier Heat Conduction,” J. Appl. Phys., 102, p. 053503.

[CrossRef]Tzou, D. Y., and Guo, Z.-Y., 2010, “Nonlocal Behavior in Thermal Lagging,” Int. J. Therm. Sci., 49, pp. 1133–1137.

[CrossRef]Dong, Y., Cao, B.-Y., and Guo, Z.-Y., 2011, “Generalized Heat Conduction Laws Based on Thermomass Theory and Phonon Hydrodynamics,” J. Appl. Phys., 110, p. 063504.

[CrossRef]Dong, Y., Cao, B.-Y., and Guo, Z.-Y., 2012, “General Expression for Entropy Production in Transport Processes Based on the Thermomass Model,” Phys. Rev. E, 85, p. 061107.

[CrossRef]Dong, Y., Cao, B.-Y., and Guo, Z.-Y., 2013, “Temperature in Nonequilibrium States and Non-Fourier Heat Conduction,” Phys. Rev. E, 87, p. 032150.

[CrossRef]Wang, M., Yang, N., and Guo, Z.-Y., 2011, “Non-Fourier Heat Conductions in Nanomaterials,” J. Appl. Phys., 110, p. 064310.

[CrossRef]Sellitto, A., and Cimmelli, V. A., 2012, “A Continuum Approach to Thermomass Theory,” ASME J. Heat Transfer, 134, p. 112402.

[CrossRef]Balandin, A. A., Ghosh, S., Baoand, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.-N., 2008, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., 8(3), pp. 902–907.

[CrossRef]Liboff, R. L., 1990, *Kinetic Theory (Classical, Quantum, and Relativistic Descriptions)*, Prentice-Hall, Englewood Cliffs, NJ.

Ziman, J. M., 2001, *Electrons and Phonons*, Oxford University Press, Oxford.

Alvarez, F. X., Jou, D., and Sellitto, A., 2009, “Phonon Hydrodynamics and Phonon-Boundary Scattering in Nanosystems,” J. Appl. Phys., 105, p. 014317.

[CrossRef]Wang, M., Cao, B.-Y., and Guo, Z.-Y., 2010, “General Heat Conduction Equations Based on the Thermomass Theory,” Front. Heat Mass Transfer, 1, p. 013004.

[CrossRef]Sellitto, A., Cimmelli, V. A., and Jou, D., 2012, “Analysis of Three Nonlinear Effects in a Continuum Approach to Heat Transport in Nanosystems,” Physica D, 241, pp. 1344–1350.

[CrossRef]Levermore, C. D., 1984, “Relating Eddington Factors to Flux Limiters,” J. Quantum Spectrosc. Radiat. Transfer, 31, pp. 149–160.

[CrossRef]Anile, A. M., Pennisi, S., and Sammartino, M., 1991, “A Thermodynamical Approach to Eddington Factors,” J. Math. Phys., 32, pp. 544–550.

[CrossRef]Wang, M., and Guo, Z.-Y., 2010, “Understanding of Temperature and Size Dependences of Effective Thermal Conductivity of Nanotubes,” Phys. Lett. A, 374, pp. 4312–4315.

[CrossRef]Wang, H.-D., Cao, B.-Y., and Guo, Z.-Y., 2010, “Heat Flow Choking in Carbon Nanotubes,” Int. J. Heat Mass Transfer, 53, pp. 1796–1800.

[CrossRef]Dong, Y., Cao, B.-Y., and Guo, Z.-Y., 2014, “Size Dependent Thermal Conductivity of Si Nanosystems Based on Phonon Gas Dynamics,” Physica E, 56, pp. 256–262.

[CrossRef]Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., and Majumdar, A., 2003, “Thermal Conductivity of Individual Silicon Nanowires,” Appl. Phys. Lett., 83, 2934.

[CrossRef]Torii, S., and Yang, W.-J., 2005, “Heat Transfer Mechanisms in Thin Film With Laser Heat Source,” Int. J. Heat Mass Transfer, 48, pp. 537–544.

[CrossRef]Luzzi, R., Vasconcellos, A. R., and Galvão Ramos, J., 2002, *Predictive Statistical Mechanics: A Nonequilibrium Ensemble Formalism (Fundamental Theories of Physics)*, Kluwer Academic Publishers, Dordrecht, The Netherlands.

Zhang, Z. M., 2007, *Nano/Microscale Heat Transfer*, McGraw-Hill, New York.

Sellitto, A., Jou, D., and Bafaluy, J., 2012, “Nonlocal Effects in Radial Heat Transport in Silicon Thin Layers and Graphene Sheets,” Proc. R. Soc., London, Sect. A, 468, pp. 1217–1229.

[CrossRef]Sellitto, A., Cimmelli, V. A., and Jou, D., 2013, “Entropy Flux and Anomalous Axial Heat Transport at the Nanoscale,” Phys. Rev. B, 87, p. 054302.

[CrossRef]Yin, M. T., and Cohen, M. L., 1992, “Theory of Lattice-Dynamical Properties of Solids: Application to Si and Ge,” Phys. Rev. B, 26, pp. 3259–3272.

[CrossRef]Balandin, A., and Wang, K. L., 1998, “Significant Decrease of the Lattice Thermal Conductivity due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well,” Phys. Rev. B, 58, pp. 1544–1549.

[CrossRef]Dong, Y., and Guo, Z.-Y., 2011, “Entropy Analyses for Hyperbolic Heat Conduction Based on the Thermomass Model,” Int. J. Heat Mass Transfer, 54, pp. 1924–1929.

[CrossRef]Sellitto, A., and Alvarez, F. X., 2012, “Non-Fourier Heat Removal From Hot Nanosystems Through Graphene Layer,” NanoMMTA, 1, pp. 38–47.

Mott, N., 1990, *Metal Insulator Transitions*, 2nd ed., Taylor and Francis, London.