0
Research Papers: Forced Convection

Hole Staggering Effect on the Cooling Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique

[+] Author and Article Information
Alexandros Terzis

Group of Thermal Turbomachinery (GTT),
École Polytechnique Fédérale
de Lausanne (EPFL),
Lausanne CH-1015, Switzerland
e-mail: alexandros.terzis@epfl.ch

Guillaume Wagner

Alstom,
Baden CH-5401, Switzerland

Jens von Wolfersdorf

Institute of Aerospace Thermodynamics (ITLR),
Universität Stuttgart,
Pfaffenwaldring 31,
D-70569 Stuttgart, Germany

Peter Ott

Group of Thermal Turbomachinery (GTT),
École Polytechnique Fédérale
de Lausanne (EPFL),
Lausanne CH-1015, Switzerland

Bernhard Weigand

Institute of Aerospace Thermodynamics (ITLR),
Universität Stuttgart,
Pfaffenwaldring 31,
Stuttgart D-70569, Germany

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received September 3, 2012; final manuscript received March 18, 2014; published online April 8, 2014. Assoc. Editor: Terry Simon.

J. Heat Transfer 136(7), 071701 (Apr 08, 2014) (9 pages) Paper No: HT-12-1477; doi: 10.1115/1.4027250 History: Received September 03, 2012; Revised March 18, 2014

This study examines experimentally the cooling performance of narrow impingement channels as could be cast-in in modern turbine airfoils. Full surface heat transfer coefficients are evaluated for the target plate and the sidewalls of the channels using the transient liquid crystal technique. Several narrow impingement channel geometries, consisting of a single row of five cooling holes, have been investigated composing a test matrix of nine different models. The experimental data are analyzed by means of various post-processing procedures aiming to clarify and quantify the effect of cooling hole offset position from the channel centerline on the local and average heat transfer coefficients and over a range of Reynolds numbers (11,100–86,000). The results indicated a noticeable effect of the jet pattern on the distribution of convection coefficients as well as similarities with conventional multi-jet impingement cooling systems.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lutum, E., Semmler, K., and von Wolfersdorf, J., 2002, “Cooled Blade for a Gas Turbine,” U.S. Patent No. 6,397,118 B2.
Weigand, B., and Spring, S., 2011, “Multiple Jet Impingement–A Review,” Heat Transfer Res., 42(2), pp. 101–142. [CrossRef]
Gillespie, D. R. H., Wang, Z., Ireland, P. T., and Kohler, S. T., 1998, “Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Configurations,” ASME J. Turbomach., 120, pp. 92–99. [CrossRef]
Chambers, A. C., Gillespie, D. R. H., Ireland, P. T., and Dailey, G. M., 2005, “The Effect of Initial Crossflow on the Cooling Performance of a Narrow Impingement Channel,” ASME J. Heat Transfer, 127(4), pp. 358–365. [CrossRef]
Chambers, C. A., Gillespie, D. R. H., Ireland, P. T., and Kingston, R., 2010, “Enhancement of Impingement Cooling in a High Crossflow Channel Using Shaped Impingement Cooling Holes,” ASME J. Turbomach., 132, pp. 021021–021028. [CrossRef]
Ricklick, M., Claretti, R., and Kapat, J. S., 2010, “Channel Height and Jet Spacing Effect on Heat Transfer and Uniformity Coefficient on an Inline Row Impingement Channel,” Proceedings of ASME Turbo Expo 2010, Glasgow, UK.
Ricklick, M., Kapat, J. S., and Heidmann, J., 2010, “Sidewall Effects on Heat Transfer Coefficient,” J. Thermophys. Heat Transfer, 24(1), pp. 123–132. [CrossRef]
Gillespie, D. R. H., Wang, Z., and Ireland, P. T., 1995, “Heating Element,” UK patent application PCT/G96/2017.
Terzis, A., von Wolfersdorf, J., Wagner, G., Weigand, B., and Ott, P., 2012, “Influence of Thermocouple Thermal Inertia in Impingement Heat Tranfer Experiments Using Transient Techniques,” XXI Biannual Symposium on Measuring Techniques in Turbomachinery, Mar. 22–23, 2012, Valencia, Spain.
Park, J., Goodro, M., Ligrani, P., Fox, M., and Moon, H.-K., 2007, “Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer,” ASME J. Turbomach., 129, pp. 269–280. [CrossRef]
Ireland, P. T., Neely, A. J., Gillespie, D. H. R., and Robertson, A. J., 1999, “Turbulent Heat Transfer Measurements Using Liquid Crystals,” Int. J. Heat Fluid Flow, 20, pp. 355–367. [CrossRef]
Incropera, F. P., Dewitt, D. P., Bergman, T. L., and Lavine, A. S., 2006, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Hoboken, NJ.
Poser, R., and von Wolfersdorf, J., 2011, “Liquid Crystal Thermography for Transient Heat Transfer Measurements in Complex Internal Cooling Systems,” Heat Transfer Res., 42(2), pp. 181–197. [CrossRef]
Vogel, G., and Bölcs, A., 2001, “A Novel Digital Image Processing System for the Transient Liquid Crystal Technique Applied for Heat Transfer and Film Cooling Measurements,” Ann. N. Y. Acad. Sci., 934(1), pp. 297–304. [CrossRef]
Terzis, A., Wagner, G., and Ott, P., 2012, “Hole Staggering Effect on the Cooling Performance of Narrow Impingement Channels,” ASME, GT2012-68323, TurboExpo 2012, June 11–15, Copenhagen.
Kingsley-Rowe, J. R., Lock, G. D., and Owen, J. M., 2005, “Transient Heat Transfer Measurements Using Thermochromic Liquid Crystals: Lateral-Conduction Error,” Int. J. Heat Fluid Flow, 26(2), pp. 256–263. [CrossRef]
Ireland, P. T., and Jones, T. V., 2000, “Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress,” Meas. Sci. Technol., 11, pp. 969–986. [CrossRef]
Kwak, J. S., 2008, “Comparison of Analytical and Superposition Solutions of the Transient Liquid Crystal Technique,” J. Thermophys. Heat Transfer, 22(2), pp. 290–295. [CrossRef]
Terzis, A., von Wolfersdorf, J., Weigand, B., and Ott, P., 2012, “Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique,” Meas. Sci. Technol., 23(11), p. 115303. [CrossRef]
Moffat, R. J., 1998, “Describing the Uncertainties in Experimental Results,” Exp. Thermal Fluid Sci., 1(1), pp. 3–17. [CrossRef]
Yan, Y., and Owen, J. M., 2002, “Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal,” Int. J. Heat Fluid Flow, 23(1), pp. 29–35. [CrossRef]
Ireland, P. T., 1987, “Internal Cooling of Turbine Blades,” D. Phil. Thesis, Department of Engineering Science, Oxford University, Oxford, UK.
Jambunathan, K., Lai, E., Moss, M. A., and Button, B. L., 1992, “A Review of the Heat Transfer Data For Single Circular Jet Impingement,” Int. J. Heat Fluid Flow, 13(2), pp. 106–115. [CrossRef]
Zhou, D. W., and Ma, C. F., 2006, “Radial Heat Transfer Behavior of Impinging Submerged Circular Jets,” Int. J. Heat Mass Transfer, 49, pp. 1719–1722. [CrossRef]
Gorin, A., 2011, “On Assymptotic Laws and Transfer Processes Enhancement in Complex Turbulent Flows,” World Acad. Sci., Eng., Technol., 81, pp. 700–706.
Baughn, J. W., and Shimizu, S., 1989, “Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet,” ASME J. Heat Transfer, 111, pp. 1096–1098. [CrossRef]
Caggese, O., Gnaegi, G., Hannema, G., Terzis, A., and Ott, P., 2013, “Experimental and Numerical Investigation of a Fully Confined Impingement Round Jet,” Int. J. Heat Mass Transfer, 65, pp. 873–882. [CrossRef]
Bouchez, J.-P., and Goldstein, J., 1975, “Impingement Cooling From a Circular Jet in a Crossflow,” Int. J. Heat Fluid Flow, 18, pp. 719–730.
Fechter, S., Terzis, A., Ott, P., Weigand, B., von Wolfersdorf, J., and Cochet, M., 2013, “Experimental and Numerical Investigation of Narrow Impingement Cooling Channels,” Int. J. Heat Mass Transfer, 67, pp. 1208–1219. [CrossRef]
Son, C. M., Gillespie, D. R. H., Ireland, P. T., and Dailey, G. M., 2001, “Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System,” ASME J. Turbomach., 123, pp. 154–160. [CrossRef]
Florschuetz, L. W., Truman, C. R., and Metzger, D. E., 1981, “Streamwise Flow and Heat Transfer Distributions For Jet Array Impingement With Crossflow,” ASME J. Heat Transfer, 103(2), pp. 337–342. [CrossRef]
Van Treuren, K. W., Wang, Z., Ireland, P. T., and Jones, T. V., 1994, “Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature Beneath an Array of Impinging Jets,” ASME J. Turbomach., 116(3), pp. 336–374. [CrossRef]
Huang, Y., Ekkad, S.V., and Han, J.-C., 1998, “Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets,” J. Thermophys. Heat Transfer, 12(1), pp. 73–78. [CrossRef]
El-Gabry, L. A., and Kaminski, D. A., 2005, “Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Jets,” ASME J. Turbomach., 127(3), pp. 532–544. [CrossRef]
Xing, Y., Spring, S., and Weigand, B., 2010, “Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets,” ASME J. Heat Transfer, 132, p. 092201. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Cast-in cooling channels in a turbine airfoil. Adopted from Lutum et al. [1].

Grahic Jump Location
Fig. 2

Impingement cooling test facility

Grahic Jump Location
Fig. 3

Test models and impingement jet patterns

Grahic Jump Location
Fig. 4

Plenum temperature history, ReD = 32,400, ΔT = 40 K

Grahic Jump Location
Fig. 5

Local NuD distribution on the centerline of the target plate for all examined ReD, X/D = Y/D = 5, Δy/Y = 0, (a) Z/D=1 and (b) Z/D=3

Grahic Jump Location
Fig. 6

Exponent m surface contours for the inline jet patterns (a) Z/D = 1, (b) Z/D = 2, and (c) Z/D = 3

Grahic Jump Location
Fig. 7

Heat transfer coefficient surface contours on the target plate and the sidewalls. X/D = Y/D = 5. ReD = 32,400, Δy/Y = 0: (a) Z/D = 1, (b) Z/D = 2, and (c) Z/D = 3; Δy/Y = 0.4: (d) Z/D = 1, (e) Z/D = 2, and (f) Z/D = 3; Δy/Y = 0.76: (g) Z/D = 1, (h) Z/D = 2, and (i) Z/D = 3.

Grahic Jump Location
Fig. 8

Local NuD distributions for different jet patterns. ReD = 32,400, X/D = Y/D = 5, (a) Z/D=1 and (b) Z/D=3.

Grahic Jump Location
Fig. 9

Stagnation point lines

Grahic Jump Location
Fig. 10

Spanwise-averaged NuD distributions for different jet patterns. ReD = 32,400, X/D = Y/D = 5, (a) Z/D=1 and (b) Z/D=3.

Grahic Jump Location
Fig. 11

Target plate and sidewall area averaged NuD as a function of ReD

Grahic Jump Location
Fig. 12

Channel pressure drop for all Z/D. Closed points: Δy/Y = 0, open points: Δy/Y = 0.76.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In