Goicochea, J. V., Madrid, M., and Amon, C., 2010, “Hierarchical Modeling of Heat Transfer in Silicon-Based Electronic Devices,” ASME J. Heat Transfer, 132(10), p. 102401.

[CrossRef]Goicochea, J. V., Madrid, M., and Amon, C. H., 2010, “Thermal Properties for Bulk Silicon Based on the Determination of Relaxation Times Using Molecular Dynamics,” ASME J. Heat Transfer, 132(1), p. 012401.

[CrossRef]McGaughey, A. J. H., and Kaviany, M., 2006, “Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction,” Adv. Heat Transfer, 39, pp. 169–255.

[CrossRef]Turney, J. E., Landry, E. S., McGaughey, A. J. H., and Amon, C. H., 2009, “Predicting Phonon Properties and Thermal Conductivity From Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations,” Phys. Rev. B, 79, p. 064301.

[CrossRef]Thomas, J. A., Turney, J. E., Iutzi, R. M., Amon, C. H., and McGaughey, A. J. H., 2010, “Predicting Phonon Dispersion Relations and Lifetimes From the Spectral Energy Density,” Phys. Rev. B, 81(8), p. 081411.

[CrossRef]Koker, N. de., 2009, “Thermal Conductivity of MgO Periclase From Equilibrium First Principles Molecular Dynamics,” Phys. Rev. Lett., 103, p. 125902.

[CrossRef] [PubMed]Henry, A. S., and Chen, G., 2008, “Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics,” J. Comput. Theor. Nanosci., 5(2), pp. 141–152.

Qiu, B., Bao, H., Zhang, G., Wu, Y., and Ruan, X., 2011, “Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures,” Comput. Mater.Sci., 53(1), pp. 278–285.

[CrossRef]Sun, L., 2008, *Phonon Transport in Confined Structures and at Interfaces*, Ph.D. thesis, Purdue University, West Lafayette, IN.

Liu, K., Chen, S., Nie, X., and Robbins, M. O., 2007, “A Continuum–Atomistic Simulation of Heat Transfer in Micro- and Nano-Flows,” J. Comput. Phys., 227(1), pp. 279–291.

[CrossRef]Werder, T., Walther, J. H., and Koumoutsakos, P., 2005, “Hybrid Atomistic–Continuum Method for the Simulation of Dense Fluid Flows,” J. Comput. Phys., 205(1), pp. 373–390.

[CrossRef]Mohamed, K. M., and Mohamad, A. A., 2010, “A Review of the Development of Hybrid Atomistic-Continuum Methods for Dense Fluids,” Microfluidics Nanofluidics, 8(3), pp. 283–302.

[CrossRef]Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2004, “Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization,” ASME J. Heat Transfer, 126(6), pp. 946–955.

[CrossRef]Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2006, “Boltzmann Transport Equation-Based Thermal Modeling Approaches for Hotspots in Microelectronics,” Heat Mass Transfer, 42(6), pp. 478–491.

[CrossRef]Narumanchi, S. V. J., Murthy, J. Y., and Amon, C. H., 2005, “Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors,” ASME J. Heat Transfer, 127(7), pp. 713–723.

[CrossRef]Ni, C., 2009, “Phonon Transport Models for Heat Conduction in Sub-Micron Geometries With Applications to Microelectronics,” Ph.D. thesis, Purdue University, West Lafayette, IN.

Loy, J. M., 2010, “An Acceleration Technique for the Solution of the Phonon Boltzmann Transport Equation,” M.S. thesis, Purdue University, West Lafayette, IN.

Majumdar, A., 1993, “Microscale Heat Conduction in Dielectric Thin Films,” ASME J. Heat Transfer, 115(7), pp. 7–16.

[CrossRef]Mazumder, S., and Majumdar, A., 2001, “Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization,” ASME J. Heat Transfer, 123(4), pp. 749–759.

[CrossRef]McGaughey, A. J., and Kaviany, M., 2004, “Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model under the Single-Mode Relaxation Time Approximation,” Phys. Rev. B, 69(9), p. 094303.

[CrossRef]Chen, G., 1998, “Thermal-Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices,” Phys. Rev. B, 57(23), pp. 14958–14973.

[CrossRef]Callaway, J., 1959, “Model for Lattice Thermal Conductivity at Low Temperatures,” Phys. Rev., 113(4), pp. 1046–1051.

[CrossRef]HollandM. G., 1963, “Analysis of Lattice Thermal Conductivity,” Phys. Rev., 132(6), pp. 2461–2471.

[CrossRef]Klemens, P. G., 1951, “The Thermal Conductivity of Dielectric Solids at Low Temperatures (Theoretical),” Proc. R. Soc. A, 208(1092), pp. 108–133.

[CrossRef]Ward, A., and Broido, D. A., 2010, “Intrinsic Phonon Relaxation Times from First-Principles Studies of the Thermal Conductivities of Si and Ge,” Phys. Rev. B, 81(8), p. 085205.

[CrossRef]Broido, D. A., Malorny, M., Birner, G., and Mingo, N., 2007, “Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles,” Appl. Phys. Lett., 91, p. 231922.

[CrossRef]Pascual-Gutiérrez, J. A., Murthy, J. Y., and Viskanta, R., 2009, “Thermal Conductivity and Phonon Transport Properties of Silicon Using Perturbation Theory and the Environment-Dependent Interatomic Potential,” J. Appl. Phys., 106, p. 063532.

[CrossRef]Pascual-Gutierrez, J. A., 2011, “On the Theory of Phonons: A Journey From Their Origins to the Intricate Mechanisms of Their Transport,” Ph.D. thesis, Purdue University, West Lafayette, IN.

Singh, D., Murthy, J. Y., and Fisher, T. S., 2011, “Spectral Phonon Conduction and Dominant Scattering Pathways in Graphene,” J. Appl. Phys., 110(9), p. 094312.

[CrossRef]Singh, D., 2011, “Frequency and Polarization Resolved Phonon Transport in Carbon and Silicon Nanostructures,” Ph.D. thesis, Purdue University, West Lafayette, IN.

Pilch, M., Trucano, T., and Helton, J., 2011, “Ideas Underlying Quantification of Margins and Uncertainties,” Reliab. Eng. Syst. Saf., 96(9), pp. 965–975.

[CrossRef]Oberkampf, W. L., Trucano, T. G., and Hirsch, C., 2004, “Verification, Validation, and Predictive Capability in Computational Engineering and Physics,” Appl. Mech. Rev., 57(5), pp. 345–384.

[CrossRef]Wallstrom, T. C., 2011, “Quantification of Margins and Uncertainties: A Probabilistic Framework,” Reliab. Eng. Syst. Saf., 96(9), pp. 1053–1062.

[CrossRef]Kennedy, M. C., and Optagan, A., 2001, “Bayesian Calibration of Computer Models,” J. R. Stat. Soc. B, 63(3), pp. 425–464.

[CrossRef]Rebba, R., Mahadevan, S., and Huang, H., 2006, “Validation and Error Estimation of Computational Models,” Reliab. Eng. Syst. Saf., 91(10–11), pp. 1390–1397.

[CrossRef]Sankararaman, S., Ling, Y., and Mahadevan, S., 2011, “Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction,” Eng. Fract. Mech., 78(7), pp. 1487–1504.

[CrossRef]Urbina, A., Mahadevan, S., and Paez, T., 2011, “Quantification of Margins and Uncertainties of Complex Systems in the Presence of Aleatoric and Epistemic Uncertainty,” Reliab. Eng. Syst. Saf., 96(9), pp. 1114–1125.

[CrossRef]Zhang, R., and Mahadevan, S., 2003, “Bayesian Methodology for Reliability Model Acceptance,” Reliab. Eng. Syst. Saf., 80(1), pp. 95–103.

[CrossRef]Chib, S., and Greenberg, E., 1995, “Understanding the Metropolis-Hastings Algorithm,” Am. Stat., 49(4), pp. 327–335.

[CrossRef]Salloum, M., Sargsyan,K., Jones, R., Debusschere, B., Najm, H. N., and Adalsteinsson, H., 2011, “Uncertainty Quantification in Multiscale Atomistic-Continuum Models,” Uncertainty Quantification and Multiscale Materials Modeling Workshop, Santa Fe, NM, June 13–15.

Rizzi, F., Jones, R. E., Debusschere, B., and Knio, O. M., 2013, “Uncertainty Quantification in MD Simulations of Concentration Driven Ionic Flow Through a Silica Nanopore: I. Sensitivity to Physical Parameters of the Pore,” J. Chem. Phys., 138(19), p. 194104.

[CrossRef] [PubMed]Rizzi, F., Jones, R. E., Debusschere, B., and Knio, O. M., 2013, “Uncertainty Quantification in MD Simulations of Concentration Driven Ionic Flow Through a Silica Nanopore: II. Uncertain Potential Parameters,” J. Chem. Phys., 138(19), p. 194105.

[CrossRef] [PubMed]Fishman, G., 1996, *Monte Carlo: Concepts, Algorithms, and Applications*, Springer–Verlag, New York.

Giunta, A. A., Eldred, M., Swiler, L., Trucano, T., and Wotjkiewicz, S. J., 2004, “Perspectives on Optimization under Uncertainty: Algorithms and Applications,” Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York.

Cressie, N., 1991, *Statistics of Spatial Data*, John Wiley and Sons, New York.

Xiu, D., and Karniadakis, G., 2002, “The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM J. Sci. Comput., 24, pp. 619–644.

[CrossRef]Xiu, D., and Karniadakis, G., 2003, “A New Stochastic Approach to Transient Heat Conduction Modeling with Uncertainty,” Int. J. Heat Mass Transfer, 46, pp. 4681–4693.

[CrossRef]Xiu, D., 2009, “Fast Numerical Methods for Stochastic Computations: A Review,” Commun. Comput. Phys., 5, pp. 242–272.

Xiu, D., and Hesthaven, J. S., 2005, “High Order Collocation Methods for Differential Equations with Random Inputs,” SIAM J. Sci. Comput., 27(3), pp. 1118–1139.

[CrossRef]Ghanem, R., and Spanos, P., 1991, *Stochastic Finite Elements: A Spectral Approach*, Springer-Verlag, New York.

Ganapathysubramanian, B., and Zabaras, N., 2007, “Sparse Grid Collocation Schemes for Stochastic Natural Convection Problems,” J. Comput. Phys., 225, pp. 652–685.

[CrossRef]Smolyak, S., 1963, “Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions,” Soviet Mathematics, Doklady, 4, pp. 240–243.

Najm, H. N., 2009, “Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics,” Ann. Rev. Fluid Mech., 41, pp. 35–52.

[CrossRef]Ma, X., and Zabaras, N., 2008, “An Adaptive Hierarchical Sparse Grid Collocation Algorithm for the Solution of Stochastic Differential Equations,” J. Comput. Phys., 228(8), pp. 3084–3113.

[CrossRef]Agarwal, N., and Aluru, N. R., 2010, “A Data-Driven Stochastic Collocation Approach for Uncertainty Quantification in MEMS,” Int. J. Numer. Methods Eng., 83(5), pp. 575–597.

[CrossRef]Stillinger, F. H., and Weber, T. A., 1985, “Computer Simulation of Local Order in Condensed Phases of Silicon,” Phys. Rev. B, 31(8), pp. 5262–5271.

[CrossRef]Plimpton, S., 1995, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117(1), pp. 1–19.

[CrossRef]Wang, Y. G., Qiu, B., McGaughey, A., Ruan, X. L., and Xu, X. F., 2013, “Mode-Wise Thermal Conductivity of Bismuth Telluride,” J. Heat Transfer, 135(9), p. 091102.

[CrossRef]Sun, L., and Murthy, J. Y., 2006, “Domain Size Effects in Molecular Dynamics Simulation of Phonon Transport in EDIP Silicon,” Appl. Phys. Lett., 89, p. 171919.

[CrossRef]Valleau, J. P., and Whittington, S. G., 1977, “A Guide to Monte Carlo for Statistical Mechanics,” *Statistical Mechanics, Part A: Equilibrium Techniques*, B. J.Berne, ed., Plenum, New York.

Patankar, S. V., 1980, *Numerical Heat Transfer and Fluid Flow*, Taylor & Francis, London.