Research Papers: Heat Exchangers

Multi-objective Design Optimization of Branching, Multifloor, Counterflow Microheat Exchangers

[+] Author and Article Information
Abas Abdoli

Department of Mechanical
and Materials Engineering,
Florida International University,
MAIDROC Laboratory, EC2960,
10555 West Flagler Street, EC3462,
Miami, FL 33174
e-mail: aabdo004@fiu.edu

George S. Dulikravich

Professor and Director of MAIDROC
Fellow ASME
Department of Mechanical
and Materials Engineering,
Florida International University,
MAIDROC Laboratory, EC2960,
10555 West Flagler Street, EC3462,
Miami, FL 33174
e-mail: dulikrav@fiu.edu

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received September 14, 2013; final manuscript received June 20, 2014; published online July 15, 2014. Assoc. Editor: Oronzio Manca.

J. Heat Transfer 136(10), 101801 (Jul 15, 2014) (10 pages) Paper No: HT-13-1483; doi: 10.1115/1.4027911 History: Received September 14, 2013; Revised June 20, 2014

Heat removal capacity, coolant pumping power requirement, and surface temperature nonuniformity are three major challenges facing single-phase flow microchannel compact heat exchangers. In this paper multi-objective optimization has been performed to increase heat removal capacity, and decrease pumping power and temperature nonuniformity in complex networks of microchannels. Three-dimensional (3D) four-floor configurations of counterflow branching networks of microchannels were optimized to increase heat removal capacity from surrounding silicon substrate (15 × 15 × 2 mm). Each floor has four different branching subnetworks with opposite flow direction with respect to the next one. Each branching subnetwork has four inlets and one outlet. Branching patterns of each of these subnetworks could be different from the others. Quasi-3D conjugate heat transfer analysis has been performed by developing a software package which uses quasi-1D thermofluid analysis and a 3D steady heat conduction analysis. These two solvers were coupled through their common boundaries representing surfaces of the cooling microchannels. Using quasi-3D conjugate analysis was found to require one order of magnitude less computing time than a fully 3D conjugate heat transfer analysis while offering comparable accuracy for these types of application. The analysis package is capable of generating 3D branching networks with random topologies. Multi-objective optimization using modeFRONTIER software was performed using response surface approximation and genetic algorithm. Diameters and branching pattern of each subnetwork and coolant flow direction on each floor were design variables of multi-objective optimization. Maximizing heat removal capacity, while minimizing coolant pumping power requirement and temperature nonuniformity on the hot surface, were three simultaneous objectives of the optimization. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with four-floor microchannel cooling networks. A fully 3D thermofluid analysis was performed for one of the optimal designs to confirm the accuracy of results obtained by the quasi-3D simulation package used in this paper.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Mudawar, I., 2001, “Assessment of High-Heat-Flux Thermal Management Schemes,” IEEE Trans. Compon. Packag. Technol., 24(2), pp. 122–141. [CrossRef]
Ebadian, M. A., and Lin, C. X., 2011, “A Review of High-Heat-Flux Heat Removal Technologies,” ASME J. Heat Transfer, 133(11), p. 110801. [CrossRef]
Pence, D. V., 2000, “Improved Thermal Efficiency and Temperature Uniformity Using Fractal Tree-Like Branching Channel Networks,” Heat Transfer and Transport Phenomena, G. P. Celata, V. P. Carey, M. Groll, I. Tanasawa, and G. Zummo (eds.), Begell House, New York. pp. 142–148.
Bowers, M. B., and Mudawar, I., 1994, “High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks,” Int. J. Heat Mass Transfer, 37(2), pp. 321–332. [CrossRef]
Kim, S. J., and Kim, D., 1999, “Forced Convection Cooling in Microstructures for Electronic Equipment Cooling,” ASME J. Heat Transfer, 121(3), pp. 639–645. [CrossRef]
Fedorov, A. G., and Viskanta, R., 2000, “Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging,” Int. J. Heat Mass Transfer, 43(3), pp. 399–415. [CrossRef]
Kosar, A., and Peles, Y., 2006, “Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink,” ASME J. Heat Transfer, 128(2), pp. 121–131. [CrossRef]
Colgan, E. G., Furman, B., Gaynes, M., Graham, W., LaBianca, N., Polastre, R. J., Rothwell, M. B., Bezama, R. J., Choudhary, R., Marston, K., Toy, H., Wakil, J., Zitz, J. A., and Schmidt, R., 2007, “A Practical Implementation of Silicon Microchannel Coolers for High Power Chips,” IEEE Trans. Compon. Packag. Technol., 30(2), pp. 218–225. [CrossRef]
Walchli, R., Brunschwiler, T., Michel, B., and Poulikakos, D., 2010, “Self-Contained, Oscillating Flow Liquid Cooling System for Thin Form Factor High Performance Electronics,” ASME J. Heat Transfer, 132(5), pp. 1–9. [CrossRef]
Haller, D., Woias, P., and Kockmann, N., 2009, “Simulation and Experimental Investigation of Pressure Loss and Heat Transfer in Microchannel Networks Containing Bends and T-Junctions,” Int. J. Heat Mass Transfer, 52(11–12), pp. 2678–2689. [CrossRef]
Kim, Y. J., Joshi, Y. K., Fedorov, A. G., Lee, Y.-J., and Lim, S.-K., 2010, “Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux,” ASME J. Heat Transfer, 132(4), pp. 1–9. [CrossRef]
Martin, T. J., and Dulikravich, G. S., 2001, “Aero-Thermo-Elastic Concurrent Design Optimization of Internally Cooled Turbine Blades,” Coupled Field Problems (Series on Advances in Boundary Elements, A. J.Kassab, and M. H.Aliabadi, eds., WIT Press, Boston, MA, pp. 137–184.
Jelisavcic, N., Martin, T. J., Moral, R. J., Sahoo, D., Dulikravich, G. S., and Gonzalez, M., 2005, “Design Optimization of Networks of Cooling Passages,” ASME Paper No. IMECE2005-79175. [CrossRef]
Hong, F. J., Cheng, P., Ge, H., and Joo, T., 2006, “Design of a Fractal Tree-Like Microchannel Net Heat Sink for Microelectronic Cooling Limerick, Ireland,” Paper No. ICNMM2006-96157.
Gonzales, M. J., Jelisavcic, N., Moral, R. J., Sahoo, D., Dulikravich, G. S., and Martin, T. J., 2007, “Multi-Objective Design Optimization of Topology and Performance of Branching Networks of Cooling Passages,” Int. J. Therm. Sci., 46(11), pp. 1191–1202. [CrossRef]
Wei, X., and Joshi, Y., 2002, “Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling,” Proceedings of the ITherm 2002, San Diego, CA, June 1, pp. 441–448.
Husain, A., and Kim, K.-Y., 2009, “Thermal Optimization of a Microchannel Heat Sink With Trapezoidal Cross Section,” ASME J. Electron. Packag., 131(2), pp. 1–6. [CrossRef]
Kandlikar, S. G., 2010, “Microchannels: Rapid Growth of a Nascent Technology,” ASME J. Heat Transfer, 132(4), pp. 1–2. [CrossRef]
Martin, T. J., and Dulikravich, G. S., 2002, “Analysis and Multi-Disciplinary Optimization of Internal Coolant Networks in Turbine Blades,” AIAA J. Propul. Power, 18(4), pp. 896–906. [CrossRef]
OpenCFD Ltd., “OpenFOAM., 2000–2013,” http:// www.opencfd.co.uk/openfoam/
Dulikravich, G. S., and Martin, T. J., 2010, “Optimization of 3D Branching Networks of Micro-Channels for Microelectronic Device Cooling,” 14th International Heat Transfer Conference—IHTC, Washington, DC, Aug. 7–13, Paper No. IHTC14-22719.
Cengel, Y. A., and Cimbala, J. M., 2010, Fluid Mechanics: Fundamentals and Applications, 2nd ed., McGraw-Hill, New York, p. 373.
Chen, N. H., 1979, “An Explicit Equation for Friction Factor in Pipe,” Ind. Eng. Chem. Fundam., 18(3), pp. 296–297. [CrossRef]
Ghanbari, A., Farshad, F. F., and Rieke, H. H., 2011, “Newly Developed Friction Factor Correlation for Pipe Flow and Flow Assurance,” J. Chem. Eng. Mater. Sci., 2(6), pp. 83–86.
Sharp, Z. B., Johnson, M. C., Barfuss, S. L., and Rahmeyer, W. J., 2010, “Energy Losses in Cross Junctions,” J. Hydraul. Eng., 136(1), pp. 50–55. [CrossRef]
White, F. M., 2008, Fluid Mechanics, 6th ed., McGraw-Hill, New York. [PubMed] [PubMed]
Streeter, V. L., and Wylie, E. B., 1985, Fluid Mechanics, 8th ed., McGraw-Hill, New York.
Hamilton, J. B., 1929, “University of Washington Engineering Experimental Station Bulletin,” p. 51.
Harris, C. W., 1928, “ University of Washington Engineering Experimental Station Bulletin,” p. 48.
Hydraulic Institute, 1979, Engineering Data Book, 1st ed., Cleveland Hydraulic Institute, Cleveland, OH.
Abdoli, A., and Dulikravich, G. S., 2013, “Optimized Multi-Floor Throughflow Micro Heat Exchangers,” Int. J. Therm. Sci., 78, pp. 111–123. [CrossRef]
Jones, K. W., Liu, Y.-Q., and Cao, M.-C., 2003, “Micro Heat Pipes in Low Temperature Cofire Ceramic (LTCC) Substrates,” IEEE Trans. Compon. Packag. Technol., 26(1), pp. 110–115. [CrossRef]
Saha, A. A., and Mitra, S. K., 2012, Microfluidics and Nanofluidics Handbook: Chemistry, Physics, and Life Science Principles, Taylor & Francis Group, Boca Raton, FL, pp. 139–155.
“modeFRONTIER Optimization Software,” http://www.esteco.com
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., 2000, “A Fast and Elitist Multi-Objective Genetic Algorithm-NSGA-II,” KanGAL Report No. 2000001.
Deb, K., and Agrawal, R. B., 1995, “Simulated Binary Crossover for Continuous Search Space,” Complex Syst., 9(2), pp. 115–148.
Bejan, A., 2000, Shape and Structure, From Engineering to Nature, Cambridge University, Cambridge, UK.


Grahic Jump Location
Fig. 1

Microchannel configuration: (a) 3D four-floor microchannels and (b) four branching subnetworks on one floor

Grahic Jump Location
Fig. 2

Temperature distribution for a nonoptimized configuration: (a) hot surface (having large temperature variations CV = 1.711 × 10−2) and (b) entire 3D substrate

Grahic Jump Location
Fig. 3

Temperature distribution for nonoptimized microchannel walls: (a) four-floor microchannels, (b) first floor, (c) second floor, (d) third floor, and (e) fourth floor

Grahic Jump Location
Fig. 4

Thermal energy removed versus pumping power requirement for initial population, virtual Pareto, and real Pareto-optimal designs

Grahic Jump Location
Fig. 5

CV versus total heat removed for initial population, virtual Pareto designs, and real Pareto designs

Grahic Jump Location
Fig. 6

Temperature distribution for Pareto optimized cooling network No. 21 when using quasi-3D conjugate analysis: (a) hot surface and (b) 3D substrate

Grahic Jump Location
Fig. 7

Temperature distribution on (a) four-floor microchannels, (b) first floor, (c) second floor, (d) third floor, and (e) fourth floor of the Pareto optimized cooling network No. 21

Grahic Jump Location
Fig. 8

Temperature distribution for Pareto optimized design No. 21 when using fully 3D conjugate analysis: (a) hot surface and (b) 3D substrate

Grahic Jump Location
Fig. 9

Convergence histories for temperature field inside the substrate obtained using two conjugate analysis codes




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In