0
Research Papers: Jets, Wakes, and Impingment Cooling

Heat Transfer Prediction of a Jet Impinging a Cylindrical Deadlock Area

[+] Author and Article Information
Yacine Halouane

Département d'Énergétique,
Universite M'hamed Bougara,
Boumerdes-UMBB,
Boumerdes 35000, Algérie

Amina Mataoui

Laboratoire de Mécanique des
Fluides Théorique et Appliqué,
Faculté de Physique,
Université de Science et Technologie,
Houari Boumediene—USTHB,
Alger 16111, Algérie
e-mail: mataoui_amina@yahoo.fr

Farida Iachachene

Département de Physique,
Universite M'hamed Bougara,
Boumerdes-UMBB,
Boumerdes 35000, Algérie

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received May 7, 2013; final manuscript received August 2, 2014; published online September 16, 2014. Assoc. Editor: William P. Klinzing.

J. Heat Transfer 136(11), 112203 (Sep 16, 2014) (9 pages) Paper No: HT-13-1238; doi: 10.1115/1.4028323 History: Received May 07, 2013; Revised August 02, 2014

The turbulent heat transfer by a confined jet flowing inside a hot cylindrical cavity is investigated numerically in this paper. This configuration is found in several engineering applications such as air conditioning and the ventilation of mines, deadlock, or corridors. The parameters investigated in this work are the Reynolds number (Re, 20,000 ≤ Re ≤ 50,000) and the normalized distance Lf between jet exit and the cavity bottom (Lf, 2 ≤ Lf  ≤ 12). The numerical predictions are performed by finite volume method using the second order one-point closure turbulence model (RSM). The Nusselt number increases and attains maximum values at stagnation points, after it decreases. For an experimental test case available in the literature Lf = 8, the numerical predictions are in good agreement. Processes of heat transfer are analyzed from the flow behavior and the underlying mechanisms. The maximum local heat transfer between the cavity walls and the flow occurs at Lf = 6 corresponding to the length of the potential core. Nusselt number at the stagnation point is correlated versus Reynolds number Re and impinging distance Lf; [Nu0=f(Re,Lf)].

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Gaunter, J. W., Livingood, J. N. B., and Hrycak, P., 1970, “Survey of Literature on Flow Characteristic of a Single Turbulent Jet Impinging on a Flat Plate,” NASA Technical Note D-5652.
Jones, W. P., and Launder, B. E., 1972, “The Prediction of Laminarization With a Two Equations Model of Turbulence,” Int. J. Heat Mass Transfer, 15(2), pp. 301–314. [CrossRef]
Launder, B. E., and Spalding, D. B., 1974, “The Numerical of Computation of Turbulent Flows,” Comput. Methods Appl. Mech. Eng., 3(2), pp. 269–289. [CrossRef]
Cooper, D., Jackson, D. C., Launder, B. E., and Liao, G. X., 1993, “Impinging Jet Studies for Turbulence Model Assessment: Flow-Field Experiments,” Int. J. Heat Mass Transfer, 36(10), pp. 2675–2684. [CrossRef]
Amano, R. S., and Brandt, H., 1984, “Numerical Study of Turbulent Axisymmetric Jets Impinging on a Plate and Flowing Into an Axisymmetric Cavity,” ASME J. Fluid Eng., 106(4), pp. 410–417. [CrossRef]
Gardon, R., and Akfirat, J. C., 1965, “The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets,” Int. J. Heat Mass Transfer, 8(10), pp. 1261–1272. [CrossRef]
Gardon, R., and Akfirat, J. C., 1966, “Heat Transfer Characteristics of Impinging Two Dimensional Air Jets,” ASME J. Heat Transfer, 88(1), pp. 101–108. [CrossRef]
Metzger, D. E., Yamashita, T., and Jenkins, C. W., 1969, “Impingement Cooling of Concave Surfaces With Lines Circular Air Jets,” ASME J. Eng. Gas Turbines Power, 91(3), pp. 149–155. [CrossRef]
Chupp, R. E., Helms, H. E., McFadden, P. W., and Brown, T. R., 1969, “Evaluation of Internal Heat Transfer Coefficients for Impingement-Cooled Turbine Airfoils,” J. Aircraft, 6(3), pp. 203–208. [CrossRef]
Livingood, J. N. B., and Hrycak, P., 1973, “Impingement Heat Transfer From Turbulent Air Jets to Flat Plate—A Literature Survey,” NASA Technical Note X-2778.
Kang, H., and Tao, W., 1989, “Heat and Mass Transfer for Jet Impingement in a Cylindrical Cavity With One End Open to the Ambient Air,” AIAA Paper No. 89-0173. [CrossRef]
Lee, C. H., Lim, K. B., Lee, S. H., Yoon, Y. J., and Sung, N. W., 2007, “A Study of the Heat Transfer Characteristics of Turbulent Round Jet Impinging on an Inclined Concave Surface Using Liquid Crystal Transient Method,” Exp. Therm. Fluid Sci., 31(6), pp. 559–565. [CrossRef]
Terekhov, V. I., Kalinina, S. V., Mshvidobadze, Yu. M., and Sharov, K. A., 2009, “Impingement of an Impact Jet Onto a Spherical Cavity. Flow Structure and Heat Transfer,” Int. J. Heat Mass Transfer, 52(11–12), pp. 2498–2506. [CrossRef]
Voropayev, S. I., Sanchez, X., Nath, C., Webb, S., and Fernando, H. J. S., 2011, “Evolution of a Confined Turbulent Jet in a Long Cylindrical Cavity: Homogeneous Fluids,” Phys. Fluids, 23(11), p. 115106. [CrossRef]
Benhadid, S., 1981, “Contribution à l’étude d'un écoulement gazeux à symétrie axiale dans une cavité cylindrique,” Thèse de Docteur 3ème cycle, Mécanique des Fluides, USTHB Alger, Algeria.
Bouhenna, A., 1982, “Contribution à l’étude d'un écoulement de fluide réel à symétrie axiale dans une cavité cylindrique,” Thèse de Magister, Mécanique des Fluides, USTHB, Alger, Algeria.
Benaissa, A., 1985 “Contribution à l’étude de l’évolution d'un jet d'air à symétrie axiale dans une cavité cylindrique,” Thèse de Magister, Mécanique des Fluides, USTHB, Alger, Algeria.
Kendil, F. Z., Mataoui, A., and Benaissa, A., 2009, “Flow Structures of a Round Jet Evolving Into a Cylindrical Cavity,” Int. J. Transp. Phenom., 11(2), pp. 165–183.
Shakouchi, T., Suematsu, Y., and Ito, T., 1982, “A Study on Oscillatory Jet in a Cavity,” Bull. JSME, 25(206), pp. 1258–1265. [CrossRef]
Mataoui, A., Schiestel, R., and Salem, A., 2001, “Flow Regimes of Interaction of a Turbulent Plane Jet Into a Rectangular Cavity: Experimental Approach and Numerical Modeling,” J. Flow, Turbul. Combus., 67(4), pp. 267–304. [CrossRef]
Mataoui, A., and Schiestel, R., 2009, “Unsteady Phenomena of an Oscillating Turbulent Jet Flow Inside a Cavity: Effect of Aspect Ratio,” J. Fluids Struct., 25(1), pp. 60–79. [CrossRef]
Gilard, V., and Brizzi, L. E., 2002, “Velocity Field on the Vicinity of a Slot Jet Impinging a Curved Wall,” Proceedings of International Symposium of Laser Measurements Techniques, Laboratoire des Etudes Aéodynamique.
Launder, B. E., Reece, G. J., and Rodi, W., 1975, “Progress in the Developments of a Reynolds-Stress Turbulence Closure,” J. Fluid Mech., 68(3), pp. 537–566. [CrossRef]
Gibson, M. M., and Launder, B. E., 1978, “Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer,” J. Fluid Mech., 86(3), pp. 491–511. [CrossRef]
Fu, S., Launder, B. E., and Leschziner, M. A., 1987, “Modeling Strongly Swirling Recirculating Jet Flow With Reynolds-Stress Transport Closures,” 6th Symposium on Turbulent Shear Flows, Toulouse, France.
Launder, B. E., 1989, “Second-Moment Closure: Present… and Future?,” Int. J. Heat Fluid Flow, 10(4), pp. 282–300. [CrossRef]
Launder, B. E., 1989, “Second-Moment Closure and Its Use in Modeling Turbulent Industrial Flows,” Int. J. Numer. Methods Fluids, 9(8), pp. 963–985. [CrossRef]
Patankar, S. V., 1980, “Numerical Heat Transfer and Fluid Flow,” Series in Computational Methods in Mechanics and Thermal Sciences, Hemisphere Publ. Corp., Arlington, VA.
Tani, I., and Komatsu, Y., 1966, “Impingement of a Round Jet on a Flat Surface,” The International Congress of Applied Mechanics, Springer, Berlin, pp. 672–676.
Quan, L., 2006, “Study of Heat Transfer Characteristics of Impinging Air Jet Using Pressure and Temperature Sensitive Luminescent Paint,” Ph.D. thesis, University of Central Florida, Orlando, FL.
O'Donovan, T. S., and Murray, D. B., 2007, “Jet Impingement Heat Transfer—Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions,” Int. J. Heat Mass Transfer, 50(17), pp. 3291–3301. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Scheme of the experimental setup and computational domain

Grahic Jump Location
Fig. 2

Geometry and a typical mesh structure

Grahic Jump Location
Fig. 3

Grid cases test (axial velocity)

Grahic Jump Location
Fig. 13

Local Nusselt number along the bottom (a1, b1, c1) and lateral (a2, b2, c2) wall. Effect of Reynolds number (6 ≤ Lf ≤ 12).

Grahic Jump Location
Fig. 14

The stagnation point Nusselt number at the bottom wall of the cavity

Grahic Jump Location
Fig. 11

Effect of impinging distance on the isotherm and streamlines contours

Grahic Jump Location
Fig. 12

Local Nusselt number evolution along the bottom (a1, b1) and lateral (a2, b2) wall: effect of Reynolds number (Lf = 2 and Lf = 4)

Grahic Jump Location
Fig. 5

Reduced axial velocity profile along the jet axis

Grahic Jump Location
Fig. 6

Mean axial velocity profiles for different cross sections (Re = 37,400 and Lf = 8)

Grahic Jump Location
Fig. 7

Reynolds stress profiles for different cross sections (Re = 37,400 and Lf = 8)

Grahic Jump Location
Fig. 8

Radial evolution of the local Nusselt number on the cavity bottom f Re = 20,000 and Lf = 8

Grahic Jump Location
Fig. 9

Flow structure (Re = 37,400 and Lf = 8)

Grahic Jump Location
Fig. 10

Effect of impinging distance on axial velocity

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In