Convection heat transfer below a horizontal, hot, and isothermal strip of infinite length and width of 2L embedded in fluids with different Prandtl number (Pr) and Nusselt number (Nu) is analyzed with the aid of integral method. A new concept is utilized to determine the boundary layer thickness at the strip's edge, which is based on matching the flow rate of the boundary layer below the strip at its edge and the flow rate of the plume, which forms after the heated fluid detaches from the strip's edge. In addition to these novelties, a numerical model is developed to verify the analytical framework, and an excellent agreement is observed between the analytical and numerical models.