0
Research Papers

Optimal Shapes of Straight Fins and Finned Heat Sinks

[+] Author and Article Information
Matti Lindstedt

Tampere University of Technology,
P.O. Box 589,
Tampere FI-33101, Finland
e-mail: matti.lindstedt@tut.fi

Kaj Lampio

Tampere University of Technology,
P.O. Box 589,
Tampere FI-33101, Finland
e-mail: kaj.lampio@tut.fi

Reijo Karvinen

Professor
Tampere University of Technology,
P.O. Box 589,
Tampere FI-33101, Finland
e-mail: reijo.karvinen@tut.fi

Manuscript received April 1, 2014; final manuscript received February 3, 2015; published online March 17, 2015. Assoc. Editor: Giulio Lorenzini.

J. Heat Transfer 137(6), 061006 (Jun 01, 2015) (8 pages) Paper No: HT-14-1164; doi: 10.1115/1.4029854 History: Received April 01, 2014; Revised February 03, 2015; Online March 17, 2015

Finned heat sinks are used to cool power electronics components. We present optimization results for single rectangular, triangular, and trapezoidal fins. After that, we minimize the mass of an existing heat sink consisting of a base plate and a fin array by optimizing the geometrical variables and component locations on the base plate. An analytical solution is used with rectangular fins and a numerical model with trapezoidal fins. Whereas the triangle is the best shape for single fins, in a heat sink flow velocity coupled with geometry favors trapezoids over triangles and rectangles.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Fig. 1

Schematics of a single fin (a) and a plate fin heat sink (b)

Grahic Jump Location
Fig. 2

Minimum thermal resistance as a function of volume for rectangular and triangular fins with an isothermal base. U∞ = 10 m/s, tb = 1 mm, and Tb - T∞ = 60 °C.

Grahic Jump Location
Fig. 3

Original heat sink, M=6.65 kg

Grahic Jump Location
Fig. 4

Optimized heat sink with rectangular fins using the analytical solution in Appendix A, M=3.41 kg

Grahic Jump Location
Fig. 5

Optimized heat sink with trapezoidal fins using the finite volume method M=2.75 kg

Grahic Jump Location
Fig. 6

Mass and maximum temperature of optimized heat sinks with rectangular, triangular, and trapezoidal fins. The performance of heat sinks in Figs. 4 and 5 is marked with a circle and a square.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In