Research Papers

Optimal Shapes of Straight Fins and Finned Heat Sinks

[+] Author and Article Information
Matti Lindstedt

Tampere University of Technology,
P.O. Box 589,
Tampere FI-33101, Finland
e-mail: matti.lindstedt@tut.fi

Kaj Lampio

Tampere University of Technology,
P.O. Box 589,
Tampere FI-33101, Finland
e-mail: kaj.lampio@tut.fi

Reijo Karvinen

Tampere University of Technology,
P.O. Box 589,
Tampere FI-33101, Finland
e-mail: reijo.karvinen@tut.fi

Manuscript received April 1, 2014; final manuscript received February 3, 2015; published online March 17, 2015. Assoc. Editor: Giulio Lorenzini.

J. Heat Transfer 137(6), 061006 (Jun 01, 2015) (8 pages) Paper No: HT-14-1164; doi: 10.1115/1.4029854 History: Received April 01, 2014; Revised February 03, 2015; Online March 17, 2015

Finned heat sinks are used to cool power electronics components. We present optimization results for single rectangular, triangular, and trapezoidal fins. After that, we minimize the mass of an existing heat sink consisting of a base plate and a fin array by optimizing the geometrical variables and component locations on the base plate. An analytical solution is used with rectangular fins and a numerical model with trapezoidal fins. Whereas the triangle is the best shape for single fins, in a heat sink flow velocity coupled with geometry favors trapezoids over triangles and rectangles.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Sunden, B., and Heggs, P. J., 1999, Recent Advances in Analysis of Heat Transfer for Fin Type Surfaces, Wiley, New York.
Wang, P., McCluskey, P., and Bar-Cohen, A., 2013, “Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module,” ASME J. Electron. Packag., 135(2), p. 021001. [CrossRef]
Kraus, A. D., Aziz, A., and Welty, J., 2001, Extended Surface Heat Transfer, Wiley, New York.
Karvinen, R., 1983, “Efficiency of Straight Fins Cooled by Natural or Forced Convection,” Int. J. Heat Mass Transfer, 26(4), pp. 635–638. [CrossRef]
Karvinen, R., and Karvinen, T., 2012, “Optimum Geometry of Plate Fins,” ASME J. Heat Transfer, 134(8), p. 081801. [CrossRef]
Ryu, J. H., Choi, D. H., and Kim, S. J., 2002, “Numerical Optimization of the Thermal Performance of a Microchannel Heat Sink,” Int. J. Heat Mass Transfer, 45(13), pp. 2823–2827. [CrossRef]
Li, J., and Peterson, G. P., 2007, “3-Dimensional Numerical Optimization of Silicon-Based High Performance Parallel Microchannel Heat Sink With Liquid Flow,” Int. J. Heat Mass Transfer, 50(15–16), pp. 2895–2904. [CrossRef]
Husain, A., and Kim, K.-Y., 2009, “Thermal Optimization of a Microchannel Heat Sink With Trapezoidal Cross Section,” ASME J. Electron. Packag., 131(2), p. 021005. [CrossRef]
Wang, Z.-H., Wang, X.-D., Yan, W.-M., Duan, Y.-Y., Lee, D. J., and Xu, J.-L., 2011, “Multi-Parameters Optimization for Microchannel Heat Sink Using Inverse Problem Method,” Int. J. Heat Mass Transfer, 54(13–14), pp. 2811–2819. [CrossRef]
Muzychka, Y. S., Culham, J. R., and Yovanovich, M. M., 2003, “Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels,” ASME J. Electron. Packag., 125(2), pp. 178–185. [CrossRef]
Türkakar, G., and Okutucu-Özyurt, T., 2012, “Dimensional Optimization of Microchannel Heat Sinks With Multiple Heat Sources,” Int. J. Therm. Sci., 62, pp. 85–92. [CrossRef]
Teertstra, P., Yovanovich, M. M., and Culham, J. R., 2000, “Analytical Forced Convection Modeling of Plate Fin Heat Sinks,” J. Electron. Manuf., 10(4), pp. 253–261. [CrossRef]
Bejan, A., 1996, Entropy Generation Minimization, CRC Press, Boca Raton, FL.
Iyengar, M., and Bar-Cohen, A., 2003, “Least-Energy Optimization of Forced Convection Plate-Fin Heat Sinks,” IEEE Trans. Compon. Packag. Technol., 26(1), pp. 62–70. [CrossRef]
Lehtinen, A., 2005, “Analytical Treatment of Heat Sinks Cooled by Forced Convection,” Doctoral thesis, Tampere University of Technology, Tampere, Finland.
Kays, W., Crawford, M., and Weigand, B., 2005, Convective Heat and Mass Transfer, McGraw-Hill, New York.
Nodecal, J., and Wright, S. J., 2006, Numerical Optimization, Springer, New York.
Matlab and Optimization Toolbox R2012b, The MathWorks, Inc., Natick, MA.
Lindstedt, M., 2013, “Modeling and Optimization of Plate Fins and Plate Fin Heat Sinks,” Doctoral thesis, Tampere University of Technology, Tampere, Finland.
Razelos, P., 2003, “A Critical Review of Extended Surface Heat Transfer,” Heat Transfer Eng., 24(6), pp. 11–28. [CrossRef]
Karvinen, R., and Karvinen, T., 2010, “Optimum Geometry of Fixed Volume Plate Fin for Maximizing Heat Transfer,” Int. J. Heat Mass Transfer, 53(23–24), pp. 5380–5385. [CrossRef]
Gnielinski, V., 1975, “Neue Gleichungen für den Wärme- und den Stoffübergang in Turbulent Durchströmten Rohren und Kanälen,” Forsch. Ingenieurwes., 41(1), pp. 8–16. [CrossRef]
Jones, O. C., 1976, “Improvement in the Calculation of Turbulent Friction in Rectangular Ducts,” ASME J. Fluids Eng., 98(2), pp. 173–181. [CrossRef]
Kays, W. M., 1950, “Loss Coefficient for Abrupt Changes in Flow Cross Section With Low Reynolds Number Flow in Single and Multiple Tube Systems,” Trans. ASME, 72, pp. 1067–1074.


Grahic Jump Location
Fig. 1

Schematics of a single fin (a) and a plate fin heat sink (b)

Grahic Jump Location
Fig. 2

Minimum thermal resistance as a function of volume for rectangular and triangular fins with an isothermal base. U∞ = 10 m/s, tb = 1 mm, and Tb - T∞ = 60 °C.

Grahic Jump Location
Fig. 3

Original heat sink, M=6.65 kg

Grahic Jump Location
Fig. 4

Optimized heat sink with rectangular fins using the analytical solution in Appendix A, M=3.41 kg

Grahic Jump Location
Fig. 5

Optimized heat sink with trapezoidal fins using the finite volume method M=2.75 kg

Grahic Jump Location
Fig. 6

Mass and maximum temperature of optimized heat sinks with rectangular, triangular, and trapezoidal fins. The performance of heat sinks in Figs. 4 and 5 is marked with a circle and a square.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In